【題目】星光廚具店購(gòu)進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷(xiāo)售其進(jìn)價(jià)與售價(jià)如表
進(jìn)價(jià)(元/臺(tái)) | 售價(jià)(元/臺(tái)) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,廚具店購(gòu)進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問(wèn)廚具店在該買(mǎi)賣(mài)中賺了多少錢(qián)?
(2)為了滿足市場(chǎng)需求,二季度廚具店決定采購(gòu)電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不大于電壓鍋的,請(qǐng)你通過(guò)計(jì)算判斷,如何進(jìn)貨廚具店賺錢(qián)最多?最大利潤(rùn)是多少?
【答案】(1)1400元;(2)采購(gòu)18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),最大利潤(rùn)是2180元.
【解析】
通過(guò)審題,表格顯示了兩種商品的進(jìn)價(jià)和售價(jià);
(1)題目給出兩種電器的總數(shù)量和進(jìn)貨的總花費(fèi);設(shè)其中一個(gè)電器購(gòu)進(jìn)x臺(tái),則另一種電器購(gòu)進(jìn)(30-x)臺(tái),由購(gòu)進(jìn)總費(fèi)用可以求各種電器的數(shù)量,然后再分別乘以每種電器的利潤(rùn),最后把各種電器的利潤(rùn)相加起來(lái);
(2)題目給出了兩種電器的數(shù)量之間的關(guān)系,同時(shí)記得結(jié)合表格中的數(shù)據(jù);可以設(shè)其中的一種電器數(shù)量為 n 臺(tái),總利潤(rùn)為z元,從而列出方程,根據(jù)兩種電器之間的數(shù)量關(guān)系,確定取值范圍,從而求出利潤(rùn)的最大值.
解:(1)每件電飯鍋的利潤(rùn):250-200=50(元);每件電壓鍋的利潤(rùn):200-160=40(元)
設(shè)購(gòu)進(jìn)的電飯煲x臺(tái),則購(gòu)進(jìn)的電壓鍋(30-x)臺(tái).
由題意得:200x+160(30-x)=5600
解得:x=20
則電壓鍋:30-20=10(臺(tái))
總利潤(rùn)=50×20+40×10=1400 (元)
答:廚具店在該買(mǎi)賣(mài)中賺了1400元.
(2)設(shè)采購(gòu)的電飯煲有n 臺(tái),則采購(gòu)的電壓鍋有(50-n)臺(tái)
由題意得:總利潤(rùn)z=50n+40 (50-n)=2000+10n
∵n≤(50-n),
∴n≤
當(dāng)n=18時(shí),總利潤(rùn)z最大,則最大的利潤(rùn)為2000+10×18=2180(元)
答:采購(gòu)18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),廚具店賺錢(qián)最多,最大利潤(rùn)是2180元.
故答案為:(1)1400元;(2)采購(gòu)18臺(tái)電飯煲,32臺(tái)電壓鍋時(shí),最大利潤(rùn)是2180元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=3,BC=2,以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為α(0°<α<180°),得到矩形AEFG,點(diǎn)B、點(diǎn)C、點(diǎn)D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)E、點(diǎn)F、點(diǎn)G.
(1)如圖①,當(dāng)點(diǎn)E落在DC邊上時(shí),直寫(xiě)出線段EC的長(zhǎng)度為 ;
(2)如圖②,當(dāng)點(diǎn)E落在線段CF上時(shí),AE與DC相交于點(diǎn)H,連接AC,
①求證:△ACD≌△CAE;
②直接寫(xiě)出線段DH的長(zhǎng)度為 .
(3)如圖③設(shè)點(diǎn)P為邊FG的中點(diǎn),連接PB,PE,在矩形ABCD旋轉(zhuǎn)過(guò)程中,△BEP的面積是否存在最大值?若存在請(qǐng)直接寫(xiě)出這個(gè)最大值;若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,點(diǎn)A與點(diǎn)C關(guān)于y軸對(duì)稱,點(diǎn)E是線段AC上的點(diǎn)(點(diǎn)E不與點(diǎn)A、C重合)
(1)若點(diǎn)A的坐標(biāo)為(a,0),則點(diǎn)C的坐標(biāo)為 ;
(2)如圖1,點(diǎn)F是線段AB上的點(diǎn),若∠BEF=∠BAO,∠BAO=2∠OBE,求證:AF=CE;
(3)如圖2,若點(diǎn)D為AC上一點(diǎn),連接ED,滿足BE=BD,試探究∠ABE與∠DEC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩工程隊(duì)合作完成一項(xiàng)工程,需要12天完成,工程費(fèi)用共36000元,若甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程,乙工程隊(duì)所用的時(shí)間是甲工程隊(duì)的1.5倍,乙工程隊(duì)每天的費(fèi)用比甲工程隊(duì)少800元.
(1)問(wèn)甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若讓一個(gè)工程隊(duì)單獨(dú)完成這項(xiàng)工程,哪個(gè)工程隊(duì)的費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AE=3,ED=,求BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是兩張不同類型火車(chē)的車(chē)票:(“D×××次”表示動(dòng)車(chē),“G×××次”表示高鐵):
(1)根據(jù)車(chē)票中的信息填空:兩車(chē)行駛方向 ,出發(fā)時(shí)刻 (填“相同”或“不同”);
(2)已知該動(dòng)車(chē)和高鐵的平均速度分別為200km/h,300km/h,如果兩車(chē)均按車(chē)票信息準(zhǔn)時(shí)出發(fā),且同時(shí)到達(dá)終點(diǎn),求A,B兩地之間的距離;
(3)在(2)的條件下,請(qǐng)求出在什么時(shí)刻兩車(chē)相距100km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩輛汽車(chē)分別從A、B兩城同時(shí)沿高速公路駛向C城.已知A、C兩城的路程為500千米,B、C兩城的路程為450千米,甲車(chē)比乙車(chē)的速度快10千米/時(shí),結(jié)果兩輛車(chē)同時(shí)到達(dá)C城,求兩車(chē)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請(qǐng)將證明∠ADG=∠C過(guò)程填寫(xiě)完整.
證明:BD⊥AC,EF⊥AC(已知)
∴∠BDC=∠EFC=90°
∴BD∥
∠2=∠3
又∵∠1=∠2(已知)
∴∠1=∠3(等量代換)
∴DG∥
∴∠ADG=∠C
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com