【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)C(1,﹣1);(3)存在,P的坐標(biāo)為(,)或(﹣,).
【解析】
試題分析:(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;
(2)過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長(zhǎng),從而可表示出△BOC的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);
(3)設(shè)MB交y軸于點(diǎn)N,則可證得△ABO≌△NBO,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo),過M作MG⊥y軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長(zhǎng),由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過P作PH⊥x軸于點(diǎn)H,由條件可證得△MOG∽△POH,由==的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).
試題解析:
(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;
(2)如圖1,過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,∵點(diǎn)C是拋物線上第四象限的點(diǎn),∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CDOE+CDBF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);
(3)存在.設(shè)MB交y軸于點(diǎn)N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點(diǎn)坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴ ==2,∠POC=∠BOM,當(dāng)點(diǎn)P在第一象限時(shí),如圖3,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥x軸于點(diǎn)H,如圖3
∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);
當(dāng)點(diǎn)P在第三象限時(shí),如圖4,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥y軸于點(diǎn)H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);
綜上可知:存在滿足條件的點(diǎn)P,其坐標(biāo)為(,)或(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求BC邊的長(zhǎng);
(2)當(dāng)△ABP為直角三角形時(shí),求t的值;
(3)當(dāng)△ABP為等腰三角形時(shí),求t的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課程安排中,各班每天下午只安排三節(jié)課.
(1)初一(1)班星期二下午安排了數(shù)學(xué)、英語、生物課各一節(jié),通過畫樹狀圖求出把數(shù)學(xué)課安排在最后一節(jié)的概率;
(2)星期三下午,初二(1)班安排了數(shù)學(xué)、物理、政治課各一節(jié),初二(2)班安排了數(shù)學(xué)、語文、地理課各一節(jié),此時(shí)兩班這六節(jié)課的每一種課表排法出現(xiàn)的概率是.已知這兩個(gè)班的數(shù)學(xué)課都由同一個(gè)老師擔(dān)任,其他課由另外四位老師擔(dān)任.求這兩個(gè)班數(shù)學(xué)課不相沖突的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1) 如圖1,若BD=DC,點(diǎn)C在AE的垂直平分線上。AB+BD與DE有什么關(guān)系?請(qǐng)給出證明。
(2) 如圖2,若, AB+BD與DE是否還存在(1)中的關(guān)系?若存在,請(qǐng)給出證明,若不存在,請(qǐng)說明理由。
(3) 若,則AB+AE與AD+BE有怎樣的關(guān)系?答:AB+AE AD+BE (填“>”,“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABDC是⊙O的內(nèi)接四邊形,AB是⊙O的直徑,OD⊥BC于E.
(1)請(qǐng)你寫出四個(gè)不同類型的正確結(jié)論;
(2)若BE=4,AC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D、E,且tan∠BOA=.
(1)求邊AB的長(zhǎng);
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若B(﹣3,﹣1),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出A和C的坐標(biāo);
(3)求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)C作CH⊥AE于G,交AB于H.
(1)求∠BCH的度數(shù);
(2)求證:CE=BH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問題:
OA1=1;
OA2=; S1=×1×1=;
OA3=; S2=××1=;
OA4=; S3=××1=;
(1)推算出OA10= .
(2)若一個(gè)三角形的面積是.則它是第 個(gè)三角形.
(3)用含n(n是正整數(shù))的等式表示上述面積變化規(guī)律;
(4)求出S12+S22+S23+…+S2100的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com