【題目】已知菱形ABCD中,對角線AC與BD相交于點O,∠BAD=120°,AC=4,則該菱形的面積是( 。
A.
B.
C.
D.8

【答案】B
【解析】解:∵四邊形ABCD是菱形,
∴AB=BC,OA=AC=2,OB=BD,AC⊥BD,∠BAD+∠ABC=180°,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC是等邊三角形,
∴AB=AC=4,
∴OB===2
∴BD=2OB=4 ,
∴菱形ABCD的面積=ACBD=×4×4=8
故選:B.
【考點精析】掌握菱形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】P3,﹣5)關于y軸對稱的點的坐標為( 。

A.(﹣3,﹣5B.5,3C.(﹣3,5D.3,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45

(1)試判斷CD與⊙O的位置關系,并證明你的結論;

(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在對角線AC上,點F在邊BC上,連接BE、DF,DF交對角線AC于點G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林在某店購買A、B商品共三次,只有一次購買時,商品A、B同時打折,其余兩次均按標價購買,三次購買商品A、B的數(shù)量和費用如下表:

購買商品A的數(shù)量(個)

購買商品B的數(shù)量(個)

購買總費用(元)

第一次購物

6

5

1140

第二次購物

3

7

1110

第三次購物

9

8

1062


(1)小林以折扣價購買商品A、B是第次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).

(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關系,并說明理由.

(3)在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別寫有數(shù)字-2,-1,1的卡片,它們的背面完全相同,將這三張卡片背面朝上洗勻后隨機抽取一張,以其正面的數(shù)字作為x的值。放回卡片洗勻,再從三張卡片中隨機抽取一張,以其正面的數(shù)字作為y的值,兩次結果記為x,y。

1用樹狀圖或列表法表示x,y所有可能出現(xiàn)的結果;

2x,y表示平面直角坐標系中的點,求點x,y在函數(shù)圖象上的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不一定成立的是( 。
A.若a>b,則a+c>b+c
B.若a+c>b+c,則a>b
C.若a>b,則a>b
D.若a>b,則a>b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知直線ABAB外一點P,若過點P作一直線與AB平行,那么這樣的直線(  )

A. 有且只有一條

B. 有兩條

C. 不存在

D. 無數(shù)條

查看答案和解析>>

同步練習冊答案