如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A、B兩點.
(1)求A、B、C三點的坐標;
(2)求過A、B、C三點的拋物線的解析式;
(3)若將上述拋物線沿其對稱軸向上平移后恰好過D點,求平移后拋物線的解析式,并指出平移了多少個單位.

【答案】分析:(1)過C作CE⊥AB于E,根據(jù)拋物線的對稱性知AE=BE;由于四邊形ABCD是菱形,易證得△OAD≌△EBC,則OA=AE=BE,可設菱形的邊長為2m,則AE=BE=1m,在Rt△BCE中,根據(jù)勾股定理即可求出m的值,由此可確定A、B、C三點的坐標;
(2)根據(jù)(1)題求得的三點坐標,用待定系數(shù)法即可求出拋物線的解析式;
(3)設出平移后的拋物線解析式,將D點坐標代入此函數(shù)的解析式中,即可求出平移后的函數(shù)解析式,與原二次函數(shù)解析式進行比較即可得到平移的單位.
解答:解:(1)過C作CE⊥AB于E,由拋物線的對稱性可知AE=BE,
在Rt△AOD和Rt△BEC中,
∵OD=EC,AD=BC,
∴△AOD≌△BEC,
∴OA=BE=AE,(1分)
設菱形的邊長為2m,
在Rt△AOD中,,
解得m=1;
∴DC=2,OA=1,OB=3;
∴A、B、C三點的坐標分別為(1,0)、(3,0)、(2,);(4分)

(2)設拋物線的解析式為y=a(x-2)2+
代入A點坐標可得a=-,
拋物線的解析式為y=-(x-2)2+;(7分)

(3)設拋物線的解析式為y=-(x-2)2+k,
代入D(0,)可得k=5,
所以平移后的拋物線的解析式為y=-(x-2)2+5,(9分)
向上平移了5-=4個單位.(10分)
點評:此題考查了菱形的性質、全等三角形的性質、拋物線的對稱性、勾股定理以及二次函數(shù)圖象的平移,綜合性較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案