解方程
(1)數(shù)學(xué)公式
(2)數(shù)學(xué)公式

解:(1)方程兩邊乘以x(x+1)得,
2(x+1)=3x,
2x+2=3x,
2x-3x=-2,
-x=-2,
x=2,
檢驗:當(dāng)x=2時,x(x+1)=2(2+1)=6≠0,
所以x=2是原方程的解,
因此,原分式方程的解是x=2;

(2)方程兩邊乘以(x+1)(x-1)得,
3(x+1)-2(x-1)=6,
3x+3-2x+2=6,
3x-2x=6-3-2,
x=1
檢驗:當(dāng)x=1時,(x+1)(x-1)=(1+1)(1-1)=0,
因此,原分式方程無解.
分析:(1)方程兩邊乘以最簡公分母x(x+1),把分式方程轉(zhuǎn)化為整式方程求解,最后進(jìn)行檢驗;
(2)方程兩邊乘以最簡公分母(x+1)(x-1),把分式方程轉(zhuǎn)化為整式方程求解,最后進(jìn)行檢驗.
點評:本題主要考查了解分式方程,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊答案