(2008•資陽)如圖,已知Rt△ABC≌Rt△DEC,∠E=30°,D為AB的中點,AC=1,若△DEC繞點D順時針旋轉(zhuǎn),使ED,CD分別與Rt△ABC的直角邊BC相交于M,N.則當△DMN為等邊三角形時,AM的值為( )

A.
B.
C.
D.1
【答案】分析:要求AM的長,可以考慮在直角△ACM中利用勾股定理求解,這樣就轉(zhuǎn)化為求CM的長.
解答:解:在Rt△ABC中,∠E=30°,D為AB的中點,
則△BCD中,BC=,∠CDB=120°,CD=BD,
過點D作DP⊥BC于P點,則PC=,DP=PC•tan60°=
在Rt△DMP中,MP=DP•tan30°=,
∴CM=PC-MP=
∵在直角△ACM中,∠CAM=30°.
∴AM=2CM=
故選B.
點評:解決本題的關(guān)鍵是能夠正確理解題意,正確作出旋轉(zhuǎn)后的圖形,把求線段長的問題轉(zhuǎn)化為三角函數(shù)或勾股定理的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•資陽)如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標;如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當點P運動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷44(戴村鎮(zhèn)中 任華芳 楊莉秋)(解析版) 題型:解答題

(2008•資陽)如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標;如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當點P運動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•資陽)如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標;如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當點P運動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•資陽)如圖,在△ABC中,∠A,∠B的平分線交于點D,DE∥AC交BC于點E,DF∥BC交AC于點F.
(1)點D是△ABC的______心;
(2)求證:四邊形DECF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•資陽)如圖,在地面上有一個鐘,鐘面的12個粗線段刻度是整點時時針(短針)所指的位置,根據(jù)圖中時針與分針(長針)所指的位置,該鐘面所顯示的時刻是        分.

查看答案和解析>>

同步練習(xí)冊答案