【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)P在CD上(與點(diǎn)C,D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過(guò)點(diǎn)Q作QM⊥BD于M,連接AM,PM(如圖1).
(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(2)若點(diǎn)P在線段CD的延長(zhǎng)線上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
【答案】(1)AM=PM,AM⊥PM.(2)成立,理由見(jiàn)解析.
【解析】
試題分析:(1)先判斷出△DMQ是等腰直角三角形,再判斷出△MDP≌△MQC(SAS),最后進(jìn)行簡(jiǎn)單的計(jì)算即可;
(2)先判斷出△DMQ是等腰直角三角形,再判斷出△MDP≌△MQC(SAS),最后進(jìn)行簡(jiǎn)單的計(jì)算即可.
試題解析:(1)連接CM,
∵四邊形ABCD是正方形,QM⊥BD,
∴∠MDQ=45°,
∴△DMQ是等腰直角三角形.
∵DP=CQ,
在△MDP與△MQC中
∴△MDP≌△MQC(SAS),
∴PM=CM,∠MPC=∠MCP.
∵BD是正方形ABCD的對(duì)稱(chēng)軸,
∴AM=CM,∠DAM=∠MCP,
∴∠AMP=180°-∠ADP=90°,
∴AM=PM,AM⊥PM.
(2)成立,
理由如下:
連接CM,
∵四邊形ABCD是正方形,QM⊥BD,
∴∠MDQ=45°,
∴△DMQ是等腰直角三角形.
∵DP=CQ,
在△MDP與△MQC中
∴△MDP≌△MQC(SAS),
∴PM=CM,∠MPC=∠MCP.
∵BD是正方形ABCD的對(duì)稱(chēng)軸,
∴AM=CM,∠DAM=∠MCP,
∴∠DAM=∠MPC,
∵∠PND=∠ANM
∴∠AMP=∠ADP=90°
∴AM=PM,AM⊥PM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式從左邊到右邊的變形是因式分解的是( )
A.(a+1)(a﹣1)=a2﹣1
B.a2﹣6a+9=(a﹣3)2
C.x2+2x+1=x(x+2x)+1
D.﹣18x4y3=﹣6x2y23x2y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海中一小島有一個(gè)觀測(cè)點(diǎn)A,某天上午觀測(cè)到某漁船在觀測(cè)點(diǎn)A的西南方向上的B處跟蹤魚(yú)群由南向北勻速航行.B處距離觀測(cè)點(diǎn)30海里,若該漁船的速度為每小時(shí)30海里,問(wèn)該漁船多長(zhǎng)時(shí)間到達(dá)觀測(cè)點(diǎn)A的北偏西60°方向上的C處?(計(jì)算結(jié)果用根號(hào)表示,不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn)(2,3)和(-1,-3),直線經(jīng)過(guò)原點(diǎn),且與直線交于點(diǎn)P(-2,a).
(1)求a的值.
(2)(-2,a)可看成怎樣的二元一次方程組的解?
(3)設(shè)直線與x軸交于點(diǎn)A,你能求出△APO的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(-2a2) ·(3ab2-5ab3)結(jié)果是( )
A. 6a3b2+10a3b3B. -6a3b2+10a2b3C. -6a3b2+10a3b3D. 6a3b2-10a3b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的三邊分別為3,x,7,那么x的取值范圍是( )
A.4<x<10
B.1<x<10
C.3<x<7
D.4<x<6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com