【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,動點P從點B出發(fā)沿射線BC方向以2cm/s的速度運(yùn)動.設(shè)運(yùn)動的時間為t秒,則當(dāng)t=_____秒時,△ABP為直角三角形.
【答案】3或4
【解析】
分兩種情況討論:①當(dāng)∠APB為直角時,點P與點C重合,根據(jù) 可得;②當(dāng)∠BAP為直角時,利用勾股定理即可求解.
∵∠C=90°,AB=4cm,∠B=30°,
∴AC=2cm,BC=6cm.
①當(dāng)∠APB為直角時,點P與點C重合,BP=BC=6 cm,
∴t=6÷2=3s.
②當(dāng)∠BAP為直角時,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,
在Rt△ACP中,AP2=(2 )2+(2t﹣6)2,
在Rt△BAP中,AB2+AP2=BP2,
∴(4)2+[(2)2+(2t﹣6)2]=(2t)2,
解得t=4s.
綜上,當(dāng)t=3s或4s時,△ABP為直角三角形.
故答案為:3或4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當(dāng)|PA﹣PB|最大時,點P的坐標(biāo)為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實情況,學(xué)校安排政教處在七年級學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學(xué)生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計圖.
請你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學(xué)生,請你估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把平面內(nèi)一條數(shù)軸x繞點O逆時針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個平面斜坐標(biāo)系.規(guī)定:已知點P是平面斜坐標(biāo)系中任意一點,過點P作y軸的平行線交x軸于點A,過點P作x軸的平行線交y軸于點B,若點A在x軸上對應(yīng)的實數(shù)為a,點B在y軸上對應(yīng)的實數(shù)為b,則稱有序?qū)崝?shù)對(a,b)為點P的斜坐標(biāo).在平面斜坐標(biāo)系中,若θ=45°,點P的斜坐標(biāo)為(1,2),點G的斜坐標(biāo)為(7,﹣2),連接PG,則線段PG的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售部有營銷員15人,銷售部為了制定關(guān)于某種商品的每位營銷員的個人月銷售定額,統(tǒng)計了這15人某月關(guān)于此商品的個人月銷售量(單位:件)如下:
個人月銷售量 | 1800 | 510 | 250 | 210 | 150 | 120 |
營銷員人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營銷員該月關(guān)于此商品的個人月銷售量的平均數(shù),并直接寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)假設(shè)該銷售部負(fù)責(zé)人把每位營銷員關(guān)于此商品的個人月銷售定額確定為320件,你認(rèn)為對多數(shù)營銷員是否合理?并在(1)的基礎(chǔ)上說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出一個問題“用直尺和圓規(guī)作一個矩形”.
小華的做法如下:
如圖1,任取一點O,過點O作直線l1,l2;如圖2,以O為圓心,任意長為半徑作圓,與直線l1,l2分別相交于點A、C,B、D;如圖3,連接AB、BC、CD、DA四邊形ABCD即為所求作的矩形.
老師說:“小華的作法正確”.
請回答:小華的作圖依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題:
小聰學(xué)完了“銳角三角函數(shù)”的相關(guān)知識后,通過研究發(fā)現(xiàn):如圖1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通過上網(wǎng)查閱資料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在著==的關(guān)系.
這個關(guān)系對于一般三角形還適用嗎?為此他做了如下的探究:
(1)如圖2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,請判斷此時“==”的關(guān)系是否成立?答:
(2)完成上述探究后,他又想“對于任意的銳角△ABC,上述關(guān)系還成立嗎?”因此他又繼續(xù)進(jìn)行了如下的探究:
如圖3,在銳角△ABC中,BC=a,AC=b,AB=c,請判斷此時“ ==”的關(guān)系是否成立?并證明你的判斷.(提示:過點C作CD⊥AB于D,過點A作AH⊥BC,再結(jié)合定義或其它方法證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com