【題目】如圖,AB為半圓O的直徑,以AO為直徑作半圓M,C為OB的中點,D在半圓M上,且CD⊥MD,延長AD交半圓O于點E,且AB=4,則圓中陰影部分的面積為_____________.
【答案】
【解析】分析:
由CD為半圓M的切線,得到DC⊥MD,再由M為OA中點,C為OB中點,得到AM=MO=OC=BC=1,在Rt△DMC中,由DM=MO=OC=MC可得∠DCM=30°,則∠DMC=60°結(jié)合AM=DM,可得∠MAD=∠OEA=30°,在Rt△AOD中,利用30度所對的直角邊等于斜邊的一半,求出OD的長,利用勾股定理求出AD的長,確定出AE的長,同理求出DF與AC的長,確定出∠EOB的度數(shù),最后由S陰影=S△AOE+S扇形OEB-S△ACD,求出即可.
詳解:連接EO,DO,過點D作DF⊥AB于點F,
∵CD與半圓M相切,
∴CD⊥MD,
∵AB=4,O為AB的中點,M、C分別為AO、BO的中點,
∴AM=OM=OC=CB=1,
∵在Rt△MDC中,DM=MO=OC=MC,
∴∠DCM=30°,
∴∠DMC=60°,
∵AM=DM,
∴∠MAD=∠MDA=30°,
∵OA=OE,
∴∠E=∠A=30°,
∴∠EOB=∠E+∠A=60°,OD=OA=1,
∴AD=,
又∵OD⊥AE,
∴AE=2AD=,DF=AD=,
∴AF=,
∴AC=2AF=3,
∴S陰影=S△AOE+S扇形BOE-S△ACD
=AE·OD+-AC·DF
=+-
=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)所示:等邊△ABC中,線段AD為其內(nèi)角角平分線,過D點的直線B1C1⊥AC于C1交AB的延長線于B1.
(1)請你探究: ,是否都成立?
(2)請你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內(nèi)角角平分線,請問一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90,AC=8,AB= ,DE∥AC交AB于點E,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請計算線段CD的長;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P,Q分別從A,B兩點同時出發(fā),在數(shù)軸上運動,它們的速度分別是2個單位長度/s、4個單位長度/s,它們運動的時間為t s.
(1)如果點P,Q在點A,B之間相向運動,當它們相遇時,點P對應(yīng)的數(shù)是________;
(2)如果點P,Q都向左運動,當點Q追上點P時,求點P對應(yīng)的數(shù);
(3)如果點P,Q在點A,B之間相向運動,當PQ=8時,求點P對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算或化簡:
(1)10﹣(﹣5)+(﹣9)+6;
(2)﹣14﹣5×[2﹣(﹣3)2];
(3)﹣2+(﹣)×(﹣)+(﹣)×
(4)|π-4|+|3-π|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校名學生參加的“漢字書寫”大賽,為了解本次大賽的成績,校團委隨機抽取了其中名學生的成績(成績取整數(shù),總分分)作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
根據(jù)所給信息,解答下列問題:
(1)_____,______;
(2)補全頻數(shù)直方圖;
(3)這名學生成績的中位數(shù)會落在______分數(shù)段;
(4)若成績在分以上(包括分)為“優(yōu)”等,請你估計該校參加本次比賽的名學生中成績?yōu)?/span>“優(yōu)”等的有多少人。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級全體同學參加了學校捐款活動,隨機抽取了部分同學捐款的情況統(tǒng)計圖如圖所示
(1)本次共抽查學生 人,并將條形統(tǒng)計圖補充完整;
(2)捐款金額的眾數(shù)是 ,中位數(shù)是 ;
(3)在八年級600名學生中,捐款20元及以上的學生估計有 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com