【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(﹣4,0).

(1)求該二次函數(shù)的表達式及點C的坐標;

(2)點D的坐標為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.

①求S的最大值;

②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.

【答案】(1),C(8,0);(2)50;18

【解析】

試題分析:(1)把A點和B點坐標代入得到關(guān)于b、c的方程組,然后解方程組求出b、c即可得到拋物線的解析式;然后計算函數(shù)值為0時對應(yīng)的自變量的值即可得到C點坐標

(2)①連結(jié)OF,如圖,設(shè)F(t,),利用S四邊形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面積公式得到S△CDF=,再利用二次函數(shù)的性質(zhì)得到△CDF的面積有最大值,然后根據(jù)平行四邊形的性質(zhì)可得S的最大值;

②由于四邊形CDEF為平行四邊形,則CD∥EF,CD=EF,利用C點和D的坐標特征可判斷點C向左平移8個單位,再向上平移4個單位得到點D,則點F向左平移8個單位,再向上平移4個單位得到點E,即E(t﹣8,),然后把E(t﹣8,)代入拋物線解析式得到關(guān)于t的方程,再解方程求出t后計算△CDF的面積,從而得到S的值.

試題解析:(1)把A(0,8),B(﹣4,0)代入,,解得,所以拋物線的解析式為;

當(dāng)y=0時,,解得,,所以C點坐標為(8,0);

(2)①連結(jié)OF,如圖,設(shè)F(t,),∵S四邊形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD===

當(dāng)t=3時,△CDF的面積有最大值,最大值為25,∵四邊形CDEF為平行四邊形,∴S的最大值為50;

②∵四邊形CDEF為平行四邊形,∴CD∥EF,CD=EF,∵點C向左平移8個單位,再向上平移4個單位得到點D,∴點F向左平移8個單位,再向上平移4個單位得到點E,即E(t﹣8,),∵E(t﹣8,)在拋物線上,∴ ,解得t=7,當(dāng)t=7時,S△CDF==9,∴此時S=2S△CDF=18.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F(xiàn)是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和是外角和的3倍,則它是_________ 邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9歲的小芳身高1.36米,她的表姐明年想報考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對北京有所了解.他們四人7月31日下午從無錫出發(fā),1日到4日在北京旅游,8月5日上午返回?zé)o錫.

無錫與北京之間的火車票和飛機票價如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價票;飛機 (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價票.他們往北京的開支預(yù)計如下:

住宿費

(2人一間的標準間)

伙食費

市內(nèi)交通費

旅游景點門票費

(身高超過1.2米全票)

每間每天x

每人每天100元

每人每天y

每人每天120元

假設(shè)他們四人在北京的住宿費剛好等于上表所示其他三項費用之和,7月31日和8月5日合計按一天計算,不參觀景點,但產(chǎn)生住宿、伙食、市內(nèi)交通三項費用.

(1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;

(2)若去時坐火車,回來坐飛機,且飛機成人票打五五折,其他開支不變,他們準備了14000元,是否夠用? 如果不夠,他們準備不再增加開支,而是壓縮住宿的費用,請問他們預(yù)定的標準間房價每天不能超過多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A校和B校分別庫存有電腦12臺和6臺,現(xiàn)決定支援給C校10臺和D校8臺.已知從A校調(diào)運一臺電腦到C校和D校的運費分別為40元和10元;從B校調(diào)運一臺電腦到C校和D校的運費分別為30元和20元.
(1)設(shè)A校運往C校的電腦為x臺,請仿照下圖,求總運費W(元)關(guān)于x的函數(shù)關(guān)系式;
(2)求出總運費最低的調(diào)運方案,最低運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是線段AB上一點,點M、N、P分別是線段ACBC、AB的中點, ,求:

線段AM的長;

線段PN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB及直線AB外一點P按下列要求完成畫圖和解答:1)連接PA,PB用量角器畫出∠APB的平分線PC,AB于點C;

2)過點PPDAB于點D;

3)用刻度尺取AB中點E,連接PE;

4)根據(jù)圖形回答P到直線AB的距離是線段 的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出不等式kx+b﹣<0的解集.

(3)P是x軸上的一點,且滿足△APB的面積是9,寫出P點的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強同學(xué)對本校學(xué)生完成家庭作業(yè)的時間進行了隨機抽樣調(diào)查,并繪成如下不完整的三個統(tǒng)計圖表.

組別

時間

(小時)

頻數(shù)

(人)

頻率

A

0≤x≤0.5

20

0.2

B

0.5<x≤1

a

C

1<x≤1.5

D

x>1.5

30

0.3

合計

b

1.0

各組頻數(shù)、頻率統(tǒng)計表

各組人數(shù)分布扇形統(tǒng)計圖

各組頻數(shù)條形統(tǒng)計圖

(1)a= ,b= ,∠α= ,并將條形統(tǒng)計圖補充完整。

(2)若該校有學(xué)生3200人,估計完成家庭作業(yè)時間超過1小時的人數(shù)。

(3)根據(jù)以上信息,請您給校長提一條合理的建議。

查看答案和解析>>

同步練習(xí)冊答案