【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.
【答案】
(1)
解:BD=CF.
理由如下:由題意得,∠CAF=∠BAD=θ,
在△CAF和△BAD中,
,
∴△CAF≌△BAD,
∴BD=CF
(2)
解:①由(1)得△CAF≌△BAD,
∴∠CFA=∠BDA,
∵∠FNH=∠DNA,∠DNA+∠NDA=90°,
∴∠CFA+∠FNH=90°,
∴∠FHN=90°,即BD⊥CF;②連接DF,延長AB交DF于M,
∵四邊形ADEF是正方形,AD=3 ,AB=2,
∴AM=DM=3,BM=AM﹣AB=1,
∵△ABC繞點A逆時針旋轉45°,
∴∠BAD=45°,
∴AM⊥DF,
∴DB= = ,
∵∠MAD=∠MDA=45°,
∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,
∴△DMB∽△DHF,
∴ = ,即 = ,
解得,DH= .
【解析】(1)根據旋轉變換的性質和全等三角形的判定定理證明△CAF≌△BAD,證明結論;(2)①根據全等三角形的性質、垂直的定義證明即可;②連接DF,延長AB交DF于M,根據題意和等腰直角三角形的性質求出DM、BM的長,根據勾股定理求出BD的長,根據相似三角形的性質列出比例式,計算即可得到答案.
科目:初中數學 來源: 題型:
【題目】如圖是由相同的花盆按一定的規(guī)律組成的正多邊形圖案,其中第1個圖形一共有6個花盆,第2個圖形一共有12個花盆,第3個圖形一共有20個花盆,,則第8個圖形中花盆的個數為( )
A. 90 B. 64 C. 72 D. 56
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“囧”(jiǒng)是一個風靡網絡的流行詞,像一個人臉郁悶的神情.如圖所示,一張邊長為8cm的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分).設剪去的小長方形長和寬分別為xcm、ycm,剪去的兩個小直角三角形的兩直角邊長也分別為xcm、ycm.
(1)用含有x、y的代數式表示圖中“囧”(陰影部分)的面積.
(2)當x=8,y=2時,求此時“囧”(陰影部分)的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算下列各題
(1)(﹣ab)3(5a2b﹣4ab2);
(2)(2x﹣1)(4x2+2x+1)
(3)求5x(2x+1)﹣(2x+3)(5x﹣1)的值,其中x=12.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一塊長為a米,寬為b米的矩形空地建成一個矩形花園,要求在花園中修兩條入口寬均為x米的小道,其中一條小道兩邊分別經過矩形一組對角頂點,剩余的地方種植花草,現(xiàn)有從左至右三種設計方案如圖所示,種植花草的面積分別為S1,S2和S3,則它們的大小關系為( 。
A. S3<S1<S2 B. S1<S2<S3 C. S2<S1<S3 D. S1=S2=S3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,則下列說法: ①c=0;②該拋物線的對稱軸是直線x=﹣1;③當x=1時,y=2a;④am2+bm+a>0(m≠﹣1).
其中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y1=-2x+3和直線y2=mx-3分別交y軸于點A、B ,兩直線交于點C(1,n).
(1)求 m、n 的值;
(2)求△ABC的面積;
(3)請根據圖象直接寫出:當 y1<y2時,自變量 x 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B在點A正南的方向上,與點A的距離為lcm;點C在點A北偏東30°的方向上,與點A的距離為2cm;點D在點A正西的方向上,與點A的距離為3cm.以點A為原點,正北方向為y軸,建立平面直角坐標系,規(guī)定一個單位長度代表1cm長.
(1)畫出點C、D;
(2)寫出點B、D的坐標,將點B作怎樣的平移可得到點D?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com