(2013•包頭)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①b<0;②4a+2b+c<0;③a-b+c>0;④(a+c)2<b2.其中正確的結論是( 。
分析:由拋物線的開口方向判斷a與0的關系,由對稱軸及拋物線與x軸交點情況進行推理,利用圖象將x=1,-1,2代入函數(shù)解析式判斷y的值,進而對所得結論進行判斷.
解答:解:①圖象開口向上,對稱軸在y軸右側,能得到:a>0,-
b
2a
>0,則b<0,正確;
②∵對稱軸為直線x=1,∴x=2與x=0時的函數(shù)值相等,∴當x=2時,y=4a+2b+c>0,錯誤;
③當x=-1時,y=a-b+c>0,正確;
④∵a-b+c>0,∴a+c>b;∵當x=1時,y=a+b+c<0,∴a+c<-b;∴b<a+c<-b,∴|a+c|<|b|,∴(a+c)2<b2,正確.
所以正確的結論是①③④.
故選C.
點評:本題主要考查二次函數(shù)圖象與系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉換,將x=1,-1,2代入函數(shù)解析式判斷y的值是解題關鍵,得出b<a+c<-b是本題的難點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•包頭)已知方程x2-2x-1=0,則此方程(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)已知下列命題:
①若a>b,則c-a<c-b;
②若a>0,則
a2
=a;
③對角線互相平分且相等的四邊形是菱形;
④如果兩條弧相等,那么它們所對的圓心角相等.
其中原命題與逆命題均為真命題的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)某產品生產車間有工人10名.已知每名工人每天可生產甲種產品12個或乙種產品10個,且每生產一個甲種產品可獲得利潤100元,每生產一個乙種產品可獲得利潤180元.在這10名工人中,車間每天安排x名工人生產甲種產品,其余工人生產乙種產品.
(1)請寫出此車間每天獲取利潤y(元)與x(人)之間的函數(shù)關系式;
(2)若要使此車間每天獲取利潤為14400元,要派多少名工人去生產甲種產品?
(3)若要使此車間每天獲取利潤不低于15600元,你認為至少要派多少名工人去生產乙種產品才合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•包頭)已知拋物線y=x2-3x-
7
4
的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C.
(1)求點A、B、C、D的坐標;
(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;
(3)取點E(-
3
2
,0)和點F(0,-
3
4
),直線l經過E、F兩點,點G是線段BD的中點.
①點G是否在直線l上,請說明理由;
②在拋物線上是否存在點M,使點M關于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案