如圖所示△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)13
解析試題分析:(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結合等腰直角三角形的性質即可證得結論;
(2)根據(jù)全等三角形的性質可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
考點:本題考查的是等腰直角三角形的性質,全等三角形的判定和性質,勾股定理
點評:解答本題的關鍵是熟練掌握全等三角形的性質:全等三角形的對應邊相等、對應角相等.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、90°-2α | ||
B、90°-
| ||
C、180°-2α | ||
D、180°-
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年遼寧省東港市九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題
如圖所示△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com