2.如圖,將?ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.
(1)求證:四邊形ABEC是平行四邊形;
(2)若AE=AD,求證:四邊形ABEC是矩形.

分析 (1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,AB∥CD,求出AB∥CE,AB=CE,根據(jù)平行四邊形的判定得出即可;
(2)根據(jù)平行四邊形的性質(zhì)得出AD=BC,求出AE=BC,根據(jù)矩形的判定得出即可.

解答 證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∵CE=CD,
∴AB∥CE,AB=CE,
∴四邊形ABEC是平行四邊形;

(2)∵四邊形ABCD是平行四邊形,
∴AD=BC,
∵AE=AD,
∴AE=BC,
∵由(1)知:四邊形ABEC是平行四邊形,
∴四邊形ABEC是矩形.

點(diǎn)評 本題考查了平行四邊形的性質(zhì)和判定,矩形的判定的應(yīng)用,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:對角線相等的平行四邊形是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.已知菱形ABCD的對角線AC,BD的長度是關(guān)于x的方程x2-14x+48=0的兩個實(shí)數(shù)根,則此菱形的面積是(  )
A.20B.24C.48D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:7a$\sqrt{8a}$-4a2$\sqrt{\frac{1}{8a}}$+7a$\sqrt{2a}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y=$\frac{k}{x}$(x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).
(1)求k的值.
(2)若將菱形ABCD沿x軸正方向平移m個單位,
①當(dāng)菱形的頂點(diǎn)B落在反比例函數(shù)的圖象上,求m的值;
②在平移中,若反比例函數(shù)圖象與菱形的邊AD始終有交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.已知x=$\sqrt{2}$+2,求x2-4x+6的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在?ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,對角線AC,BD相交于O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于E,F(xiàn).
(1)求證:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形.
(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等.
(3)在旋轉(zhuǎn)過程中,當(dāng)EF⊥BD時,求出此時繞點(diǎn)O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知一條直線與直線y=-x+1平行,且經(jīng)過點(diǎn)(8,2),則這條直線與兩坐標(biāo)軸圍成的三角形的面積為50.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2-5ax+4與x軸從左到右依次交于點(diǎn)A、B,交y軸于點(diǎn)C,點(diǎn)D在拋物線上,CD∥x軸,AD交y軸于點(diǎn)E,AC=CD.
(1)如圖1,求a的值;
(2)如圖2,點(diǎn)F在CD上方的拋物線上,過點(diǎn)F作FG∥y軸,交線段AD于點(diǎn)G,交線段CD于點(diǎn)H,若FG=CE,求點(diǎn)F的坐標(biāo);
(3)如圖3,在(2)的條件下,連接DF,點(diǎn)P在第一象限內(nèi)的拋物線上,點(diǎn)Q在CD下方的平面內(nèi),DQ⊥CD,∠QCP=∠ADF,若PC=PQ,求點(diǎn)P、Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.已知關(guān)于x、y的方程組$\left\{\begin{array}{l}{2x-y=m}\\{x-2y=2-m}\end{array}\right.$滿足x<0且y<0,則m的取值范圍是( 。
A.m>$\frac{4}{3}$B.m<$\frac{4}{3}$C.$\frac{2}{3}$<m<$\frac{4}{3}$D.m<$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案