【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,tanα=

(1)求k的值.
(2)求點B的坐標.
(3)設(shè)點P(m,0),使△PAB的面積為2,求m的值.

【答案】
(1)

解:把點A(1,a)代入y=2x,

得a=2,

則A(1,2).

把A(1,2)代入y= ,得k=1×2=2;


(2)

解:過B作BC⊥x軸于點C,

∵在Rt△BOC中,tanα= ,

∴可設(shè)B(2h,h).

∵B(2h,h)在反比例函數(shù)y= 的圖象上,

∴2h2=2,解得h=±1,

∵h>0,∴h=1,

∴B(2,1);


(3)

解:∵A(1,2),B(2,1),

∴直線AB的解析式為y=﹣x+3,

設(shè)直線AB與x軸交于點D,則D(3,0).

∵SPAB=SPAD﹣SPBD=2,點P(m,0),

|3﹣m|×(2﹣1)=2,

解得m1=﹣1,m2=7.


【解析】(1)把點A(1,a)代入y=2x,求出a=2,再把A(1,2)代入y= ,即可求出k的值;(2)過B作BC⊥x軸于點C.在Rt△BOC中,由tanα= ,可設(shè)B(2h,h).將B(2h,h)代入y= ,求出h的值,即可得到點B的坐標;(3)由A(1,2),B(2,1),利用待定系數(shù)法求出直線AB的解析式為y=﹣x+3,那么直線AB與x軸交點D的坐標為(3,0).根據(jù)△PAB的面積為2列出方程 |3﹣m|×(2﹣1)=2,解方程即可求出m的值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算

1)= ; (2)= ; (3)

(4) ; (5) ; (6)a3·a3 ;

(7) (x3)5 ; (8)(-2x2y3)3 ; (9) (x-y)6÷(x-y)3 ;

(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,AD=6cm,動點P、Q分別從A、C兩點同時出發(fā),點P以3cm/s的速度向點B移動,一直到達點B為止,點Q以2cm/s的速度向點D移動.

(1)P、Q兩點從出發(fā)開始,經(jīng)過幾秒時,四邊形PBCQ的面積為33cm2?
(2)P、Q兩點從出發(fā)開始,經(jīng)過幾秒時,點P和點Q的距離為10cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y= 的圖象上.若點B在反比例函數(shù)y= 的圖象上,則k的值為(

A.﹣4
B.4
C.﹣2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+4x﹣k=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)請你在﹣5,﹣4,﹣3,1,2,3中選擇一個數(shù)作為k的值,使方程有兩個整數(shù)根,并求出方程的兩個整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級(3)班共有學生54人,學習委員調(diào)查了班級學生參加課外活動的情況(每人只參加一項活動),其中:參加讀書活動的18人,參加科技活動的人數(shù)占全班總?cè)藬?shù)的,參加藝術(shù)活動的比參加科技活動的多3人,所調(diào)查班級同學參加體育活動情況如圖所示,則在扇形圖中表示參加體育活動人數(shù)的扇形的圓心角大小為(  )

A. 100° B. 110°

C. 120° D. 130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:

(1)這次隨機抽取的學生共有多少人?

(2)請補全條形統(tǒng)計圖;

(3)這個學校九年級共有學生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E是正方形ABCD的邊CD的中點,點FBC上,且∠DAE=FAE,

求證:AF=AD+CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在四邊形ABCD中,AB=CB,AD=CD.求證:∠C=∠A.

(2)如圖2,點B、F、C、E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD.求證:AB=DE.

查看答案和解析>>

同步練習冊答案