(2002•南昌)如圖,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列結(jié)論中,錯誤的是( )

A.∠1=∠2
B.PA=PB
C.AB⊥OP
D.PA2=PC•PO
【答案】分析:由切線長定理可判斷出A、B選項(xiàng)均正確.易知△ABP是等腰三角形,根據(jù)等腰三角形三線合一的特點(diǎn),可求出AB⊥OP,故C正確.而D選項(xiàng)顯然不符合切割線定理,因此D錯誤.
解答:解:連接OA、OB,AB,
∵PA切⊙O于A,PB切⊙O于B,
由切線長定理知,∠1=∠2,PA=PB,
∴△ABP是等腰三角形,
∵∠1=∠2,
∴AB⊥OP(等腰三角形三線合一),
故A,B,C正確,
根據(jù)切割線定理知:PA2=PC•(PO+OC),因此D錯誤.
故選D.
點(diǎn)評:本題利用了切線長定理,等腰三角形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB-BC-CA運(yùn)動,回到點(diǎn)A時,⊙O隨著點(diǎn)O的運(yùn)動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點(diǎn)的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點(diǎn)個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB-BC-CA運(yùn)動,回到點(diǎn)A時,⊙O隨著點(diǎn)O的運(yùn)動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點(diǎn)的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點(diǎn)個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB-BC-CA運(yùn)動,回到點(diǎn)A時,⊙O隨著點(diǎn)O的運(yùn)動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點(diǎn)的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點(diǎn)個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB-BC-CA運(yùn)動,回到點(diǎn)A時,⊙O隨著點(diǎn)O的運(yùn)動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點(diǎn)的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點(diǎn)個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB-BC-CA運(yùn)動,回到點(diǎn)A時,⊙O隨著點(diǎn)O的運(yùn)動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點(diǎn)的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點(diǎn)個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案