填空(x-y)(x2+xy+y2)=________;(x-y)(x3+x2y+xy2+y3)=________
根據(jù)以上等式進(jìn)行猜想,當(dāng)n是偶數(shù)時(shí),可得:(x-y)(xn+xn-1y+yn-2y2+…+x2yn-2+xyn-1+yn)=________.
x3-y3 x4-y4 xn+1-yn+1
分析:根據(jù)多項(xiàng)式與多項(xiàng)式相乘的法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.
解答:原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;
故答案為:x3-y3;
原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;
故答案為:x4-y4;
原式=xn+1+xny+xyn-2+x2yn-1+xyn-xny-xn-1y2-yn-1y2-…-x2yn-1-xyn-yn+1=xn+1-yn+1,
故答案為:xn+1-yn+1.
點(diǎn)評(píng):本題考查了多項(xiàng)式與多項(xiàng)式相乘的法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.