如圖所示,在不等腰三角形ABC中,AQ=PQ,PM⊥AB,PN⊥AC,PM=PN.下面給出四個(gè)結(jié)論:①AN=AM;②QP∥AM;③△BMP≌△QNP;④△AMP與△ANP全等.其中正確的是

[  ]

A.①②③④

B.僅①②④

C.僅①③

D.僅①④

答案:B
解析:

RtAPMRtAPN中,有PM=PN,AP=AP,所以可得RtAPMRtAPN(HL).所以有AN=AM和∠BAP=CAP.在△APQ中,因?yàn)?/FONT>AQ=PQ.所以∠CAP=APQ.所以∠BAP=APQ.所以可得QPAM(內(nèi)錯(cuò)角相等,兩直線平行).所以結(jié)論①、②和④是正確的,假若△BMP≌△QNP成立,則有∠CQP=B,又因?yàn)?/FONT>QPAM,所以∠CQP=BAC(兩直線平行,同位角相等).所以∠B=BAC,這與題設(shè)中的不等腰三角形是矛盾的,所以結(jié)論△BMP≌△QNP不成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖所示,在△ABC中,AB=AC,∠A=36°,仿照?qǐng)D(1),請(qǐng)你設(shè)計(jì)兩種不同的分法,將△ABC分割成3個(gè)三角形,使得每個(gè)三角形都是等腰三角形.(圖(2),圖(3)供畫圖用,作圖工具不限,不要求寫出畫法,不要求說(shuō)明理由,要求標(biāo)出所分得的每個(gè)等腰三角形的三個(gè)內(nèi)角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

梯形ABCD按如圖所示放置在直角坐標(biāo)系中(如圖a),AB在x軸上,點(diǎn)D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線y=-
3
5
x2+bx+c
經(jīng)過(guò)A、B、D三點(diǎn),點(diǎn)G是拋物線的頂點(diǎn),對(duì)稱軸GH交x軸為H,動(dòng)點(diǎn)P從點(diǎn)O沿OB以每秒1個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式與線段BC的長(zhǎng)度
(2)當(dāng)t為何值時(shí),△PHG與△AOD相似(點(diǎn)P與點(diǎn)A對(duì)應(yīng))?
(3)如圖(b),連接AC交y軸于點(diǎn)E,動(dòng)點(diǎn)Q從點(diǎn)B沿BC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),若其中有一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也立即停止運(yùn)動(dòng).
①請(qǐng)?zhí)剿鳎菏欠翊嬖谀骋粫r(shí)刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
②如圖(c),連接BD交PQ于F,當(dāng)t=
19±
61
6
19±
61
6
秒時(shí),BF=
1
2
FD
?(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

梯形ABCD按如圖所示放置在直角坐標(biāo)系中(如圖a),AB在x軸上,點(diǎn)D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線數(shù)學(xué)公式經(jīng)過(guò)A、B、D三點(diǎn),點(diǎn)G是拋物線的頂點(diǎn),對(duì)稱軸GH交x軸為H,動(dòng)點(diǎn)P從點(diǎn)O沿OB以每秒1個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式與線段BC的長(zhǎng)度
(2)當(dāng)t為何值時(shí),△PHG與△AOD相似(點(diǎn)P與點(diǎn)A對(duì)應(yīng))?
(3)如圖(b),連接AC交y軸于點(diǎn)E,動(dòng)點(diǎn)Q從點(diǎn)B沿BC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),若其中有一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也立即停止運(yùn)動(dòng).
①請(qǐng)?zhí)剿鳎菏欠翊嬖谀骋粫r(shí)刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
②如圖(c),連接BD交PQ于F,當(dāng)t=______秒時(shí),數(shù)學(xué)公式?(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題

如圖所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分別是邊AB、AC的中點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿DE方向運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥BC于Q,過(guò)點(diǎn)Q作QR∥BA交AC于R,當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)P停止運(yùn)動(dòng),設(shè)BQ=x,QR=y。
(1)若B、K兩點(diǎn)的坐標(biāo)分別為(0,0)、(5,5),C點(diǎn)在x軸的正半軸上,求經(jīng)過(guò)K、B、C三點(diǎn)的拋物線解析式;
(2)求點(diǎn)D到BC的距離DH的長(zhǎng);
(3)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(4)是否存在點(diǎn)P,使△PQR為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省溫州市瑞安市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

梯形ABCD按如圖所示放置在直角坐標(biāo)系中(如圖a),AB在x軸上,點(diǎn)D在y軸上,CD∥AB,A(-1,0),C(1,3),拋物線經(jīng)過(guò)A、B、D三點(diǎn),點(diǎn)G是拋物線的頂點(diǎn),對(duì)稱軸GH交x軸為H,動(dòng)點(diǎn)P從點(diǎn)O沿OB以每秒1個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式與線段BC的長(zhǎng)度
(2)當(dāng)t為何值時(shí),△PHG與△AOD相似(點(diǎn)P與點(diǎn)A對(duì)應(yīng))?
(3)如圖(b),連接AC交y軸于點(diǎn)E,動(dòng)點(diǎn)Q從點(diǎn)B沿BC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),若其中有一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也立即停止運(yùn)動(dòng).
①請(qǐng)?zhí)剿鳎菏欠翊嬖谀骋粫r(shí)刻t,使△OPQ是以O(shè)P為腰的等腰三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
②如圖(c),連接BD交PQ于F,當(dāng)t=______

查看答案和解析>>

同步練習(xí)冊(cè)答案