如圖,正方形ABCD的頂點(diǎn)A、B分別在y軸和x軸上,且A點(diǎn)的坐標(biāo)為(0,1),正方形的邊長(zhǎng)為.

   (1) 直接寫出D、C兩點(diǎn)的坐標(biāo);

 (2)求經(jīng)過(guò)A、D、C三點(diǎn)的拋物線的關(guān)系式;

 (3)若正方形以每秒個(gè)單位長(zhǎng)度的速度勻速沿射線下滑,直至頂點(diǎn)落在軸上時(shí)停               止.設(shè)正方形落在軸下方部分的面積為S,求S關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;

 (4)在(3)的條件下,拋物線與正方形一起平移,到頂點(diǎn)落在軸上時(shí),求拋物線上 兩點(diǎn)間的拋物線弧所掃過(guò)的面積.

 

【答案】

(1);

(2)設(shè)拋物線為,拋物線過(guò)(0,1)(3,2)(1,3),依題意得:

       

     ∴ 拋物線的關(guān)系式是                     …………………………………5分

 (3)①當(dāng)點(diǎn)A運(yùn)動(dòng)到點(diǎn)x軸時(shí),

當(dāng)時(shí),如圖1,

   

;

 ②當(dāng)點(diǎn)運(yùn)動(dòng)到軸上時(shí),,

當(dāng)時(shí),如圖2,

,

,

;

   ③當(dāng)點(diǎn)運(yùn)動(dòng)到軸上時(shí),,

當(dāng)時(shí),如圖3,

,

,  

,

 

          =

(4)∵,,

 

          =

          =

【解析】(1)可先根據(jù)AB所在直線的解析式求出A,B兩點(diǎn)的坐標(biāo),即可得出OA、OB的長(zhǎng).過(guò)D作DM⊥y軸于M,則△ADM≌△BAO,由此可得出MD、MA的長(zhǎng),也就能求出D的坐標(biāo),同理可求出C的坐標(biāo);

(2)可根據(jù)A、C、D三點(diǎn)的坐標(biāo),用待定系數(shù)法求出拋物線的解析式;

(3)要分三種情況進(jìn)行討論:

①當(dāng)F點(diǎn)在A′B′之間時(shí),即當(dāng)0<t≤1時(shí),此時(shí)S為三角形FBG的面積,可用正方形的速度求出AB′的長(zhǎng),即可求出B′F的長(zhǎng),然后根據(jù)∠GFB′的正切值求出B′G的長(zhǎng),即可得出關(guān)于S、t的函數(shù)關(guān)系式.

②當(dāng)A′在x軸下方,但C′在x軸上方或x軸上時(shí),即當(dāng)1<t≤2時(shí),S為梯形A′GB′H的面積,可參照①的方法求出A′G和B′H的長(zhǎng),那么梯形的上下底就可求出,梯形的高為A′B′即正方形的邊長(zhǎng),可根據(jù)梯形的面積計(jì)算公式得出關(guān)于S、t的函數(shù)關(guān)系式.

③當(dāng)D′逐漸移動(dòng)到x軸的過(guò)程中,即當(dāng)2<t≤3時(shí),此時(shí)S為五邊形A′B′C′HG的面積,S=正方形A′B′C′D′的面積-三角形GHD′的面積.可據(jù)此來(lái)列關(guān)于S,t的函數(shù)關(guān)系式;

(4)CE掃過(guò)的圖形是個(gè)平行四邊形,經(jīng)過(guò)關(guān)系不難發(fā)現(xiàn)這個(gè)平行四邊形的面積實(shí)際上就是矩形BCD′A′的面積.可通過(guò)求矩形的面積來(lái)求出CE掃過(guò)的面積.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案