【題目】如圖,以△ABC的邊AC為直徑的⊙O恰為△ABC的外接圓,∠ABC的平分線交⊙O于點D,過點DDEACBC的延長線于點E

(1)若∠BAC28°20′,則∠E ;

(2)求證:DE是⊙O的切線;

(3)tanACB2 ,BC2,求DE的長.

【答案】1;(2)詳見解析;(37.5

【解析】

1)根據(jù)直徑所對圓周角是直角和平行線的性質(zhì),即可得解;

2)根據(jù)圓周角定理和切線的判定方法,可得出DE是⊙O的切線;

3)根據(jù)題意可首先求出半徑,然后過點,垂足為,易得四邊形為正方形,進(jìn)而得出tanCEG=tanBCA,即,由此可求出答案.

1)∵AC是⊙O的直徑

∴∠BAC+BCA=90°

又∵DEAC

∴∠E=BCA=

故答案為:

2)證明:連接,

是⊙的直徑,

平分

是⊙的切線;

3)在中,∵tanACB2,,

,

過點,垂足為,則四邊形為正方形,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)在扇統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為_____;根據(jù)這次統(tǒng)計數(shù)據(jù)了解到最受學(xué)生歡迎的溝通方式是______

2)將條形統(tǒng)計圖補(bǔ)充完整;

3)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,的中點,以為底邊的等腰按如圖所示位置擺放,且.請僅用無刻度的直尺分別按下列要求作圖(保留作圖痕跡)

如圖①,在上求作一點,使四邊形為菱形;

如圖②,過點作線段使得線段的面積平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線lyx,點A1坐標(biāo)為(0,1),過點A1y軸的垂線交直線l于點B1,以原點O 為圓心,OB1長為半徑畫弧交y一軸于點A2;再過點A2y軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交y軸于點A3,按此做法進(jìn)行下去,點A4的坐標(biāo)為_______;點An的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17.

(1)請問1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?

(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費花費130元,每輛小貨車一次運(yùn)貨花費100元,請問貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)小組的兩位同學(xué)準(zhǔn)備測量兩幢教學(xué)樓之間的距離,如圖,兩幢教學(xué)樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學(xué)在A點測得池中噴泉處E點的俯角為42°,另一同學(xué)在C點測得E點的俯角為45°(點B,E,D在同一直線上),兩個同學(xué)已經(jīng)在學(xué)校資料室查出樓高AB=15m,CD=20m,求兩幢教學(xué)樓之間的距離BD.

(結(jié)果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABBC,分別過點A,CBM的垂線,垂足分別為MN

1)求證:BMBCABCN;

2)若ABBC

①如圖2,若BMMN,過點AADBCCM的延長線于點D,求DNCN的值;

②如圖3,若BMMN,延長BN至點E,使BMME,過點AAFBCCE的延長線于點F,若ECF的中點,且CN1,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點,COB的中點,DAB上一點,四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

同步練習(xí)冊答案