【題目】班級組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開展愛國教育活動,基地離學(xué)校有90公里,隊伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊伍提前15分鐘到達(dá)基地.問:
(1)大巴與小車的平均速度各是多少?
(2)蘇老師追上大巴的地點(diǎn)到基地的路程有多遠(yuǎn)?
【答案】(1)大巴的平均速度為40公里/時,則小車的平均速度為60公里/時;(2)蘇老師追上大巴的地點(diǎn)到基地的路程有30公里
【解析】
(1)根據(jù)“大巴車行駛?cè)趟钑r間=小車行駛?cè)趟钑r間+小車晚出發(fā)的時間+小車早到的時間”列分式方程求解可得;
(2)根據(jù)“從學(xué)校到相遇點(diǎn)小車行駛所用時間+小車晚出發(fā)時間=大巴車從學(xué)校到相遇點(diǎn)所用時間”列方程求解可得.
(1)設(shè)大巴的平均速度為x公里/時,則小車的平均速度為1.5x公里/時,根據(jù)題意,得:
=++
解得:x=40.
經(jīng)檢驗(yàn):x=40是原方程的解,∴1.5x=60公里/時.
答:大巴的平均速度為40公里/時,則小車的平均速度為60公里/時;
(2)設(shè)蘇老師趕上大巴的地點(diǎn)到基地的路程有y公里,根據(jù)題意,得:
+=
解得:y=30.
答:蘇老師追上大巴的地點(diǎn)到基地的路程有30公里.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中O是原點(diǎn),平行四邊形ABCO的頂點(diǎn)A、C的坐標(biāo)分別(8,0)、(3,4),點(diǎn)D,E把線段OB三等分,延長CD、CE分別交OA、AB于點(diǎn)F,G,連接FG.則下列結(jié)論:①F是OA的中點(diǎn);②△OFD與△BEG相似;③四邊形DEGF的面積是;④.正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此市教育局對部分學(xué)校的九年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1) 此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;并將圖①補(bǔ)充完整;
(2) 求出圖中②C級所占的圓心角的度數(shù);
(3) 根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近50000名九年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點(diǎn),
(1)如圖1,過點(diǎn)E作EH⊥BC,垂足為點(diǎn)H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點(diǎn)D、O、F.
①如圖2,當(dāng)∠BAC=90°時,求BD的長;
②如圖3,設(shè)tan∠ACB=x,BD=y,求y與x之間的函數(shù)表達(dá)式和tan∠ACB的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,將□ABCD放置在第一象限,且AB∥x軸,直線y=-x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖②所示,那么AD的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 若|a|=﹣a,則a<0
B. 式子3xy2﹣43x3y+12是七次三項式
C. 若a=b,m是有理數(shù),則
D. 若abcd<0,a+b=0,cd>0,那么這四個數(shù)中負(fù)因數(shù)的個數(shù)至少有1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.
(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;
(2)求乙的步行速度;
(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖①是一個四邊形紙條 ABCD,其中 AB∥CD,E,F 分別為邊 AB,CD 上的兩個點(diǎn),將紙條 ABCD 沿 EF 折疊得到圖②,再將圖②沿 DF 折疊得到圖③,若在圖③中,∠FEM=26°,則∠EFC 的度數(shù)為( )
A.52°B.64°C.102°D.128°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com