【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點,與y軸交于C點,且點A的坐標為(1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,并證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當△ACM的周長最小時,求點M的坐標.
【答案】(1)頂點D的坐標為(﹣,);(2)△ABC是直角三角形(3)當M的坐標為(﹣,)
【解析】分析:(1)、將點A的坐標代入函數(shù)解析式求出b的值,然后將二次函數(shù)進行配方從而得出頂點坐標;(2)、根據(jù)二次函數(shù)的解析式分別得出點A、B、C的坐標,然后分別求出AC、BC和AB的長度,然后根據(jù)勾股定理的逆定理得出答案;(3)、由拋物線的性質(zhì)可知,點A與點B關(guān)于對稱軸對稱,則BC與對稱軸的交點就是點M,根據(jù)一次函數(shù)的交點求法得出點M的坐標.
詳解:(1)、∵點A(1,0)在拋物線y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,
拋物線的解析式為y=﹣x2﹣x+2,y=﹣x2﹣x+2=﹣(x+)2+,
則頂點D的坐標為(﹣,);
(2)、△ABC是直角三角形,
證明:點C的坐標為(0,2),即OC=2, ﹣x2﹣x+2=0, 解得,x1=﹣4,x2=1,
則點B的坐標為(﹣4,0),即OB=4,OA=1,OB=4, ∴AB=5,
由勾股定理得,AC=,BC=2, AC2+BC2=25=AB2, ∴△ABC是直角三角形;
(3)、由拋物線的性質(zhì)可知,點A與點B關(guān)于對稱軸對稱,
連接BC交對稱軸于M,此時△ACM的周長最小, 設(shè)直線BC的解析式為:y=kx+b,
由題意得,, 解得,, 則直線BC的解析式為:y=x+2,
當x=﹣時,y=, ∴當M的坐標為(﹣,).
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設(shè)兩車之間的距離為y(千米),甲行駛的時間x(小時).y與x的關(guān)系如圖所示,則B、C兩地相距_____千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是的角平分線OC上一點,PNOB于點N,點M是線段ON上一點,已知OM=3,ON=4,點D為OA上一點,若滿足PD=PM,則OD的長度為________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā),以1cm/s的速度沿BA-AC方向運動到點C停止,若△BPQ的面積為y(cm2),運動時間為x(s),求在這一運動過程中y與x之間函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中,,詹姆斯在探究箏形的性質(zhì)時,得到如下結(jié)論:
;;≌;四邊形ABCD的面積其中正確的結(jié)論有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】貴州省是我國首個大數(shù)據(jù)綜合試驗區(qū),大數(shù)據(jù)在推動經(jīng)濟發(fā)展、改善公共服務(wù)等方面日益顯示出巨大的價值,為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機構(gòu)針對市民最關(guān)心的四類生活信息進行了民意調(diào)查(被調(diào)查者每人限選一項),下面是部分四類生活信息關(guān)注度統(tǒng)計圖表,請根據(jù)圖中提供的信息解答下列問題:
(1)本次參與調(diào)查的人數(shù)有 人;
(2)關(guān)注城市醫(yī)療信息的有 人,并補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,D部分的圓心角是 度;
(4)說一條你從統(tǒng)計圖中獲取的信息.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,弦BC的長為,點A為弦BC所對優(yōu)弧上任意一點(B,C兩點除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.
(參考數(shù)據(jù): ,,.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com