精英家教網 > 初中數學 > 題目詳情
如圖,AB是圓O的直徑,AD=DC,∠CAB=30°,AC=2.求AD的長.

【答案】分析:連接OD,由垂徑定理,易知OD⊥AC,可得∠AOD=60°,即△AOD是等邊三角形,因此只需求出AO即⊙O的半徑即可.在Rt△ABC中,已知了∠CAB的度數以及AC的長,易求得AB的值,由此得解.
解答:解:連接OD;
∵D是的中點,
∴OD垂直平分AC;
∴∠AOD=90°-∠CAB=60°;
又∵OA=OD,
∴△OAD是等邊三角形;
∴OA=AD;
Rt△ABC中,∠CAB=30°,AC=2;
∴AB==4,OA=2;
即:AD=OA=2.
故AD的長為2.
點評:此題主要考查圓周角定理、垂徑定理以及解直角三角形的應用.能夠根據已知條件發(fā)現(xiàn)△OAD是等邊三角形,是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系內,以y軸為對稱軸的拋物線經過直y=-
3
3
x+2與y軸的交點A和點M(-
3
2
,0).
(1)求這條拋物線所對應的二次函數的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經過原點的拋物線大致圖象;②設沿x軸向右平移后經過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的精英家教網四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標系內,以y軸為對稱軸的拋物線經過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經過原點的拋物線大致圖象;②設沿x軸向右平移后經過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源:第6章《二次函數》中考題集(38):6.4 二次函數的應用(解析版) 題型:解答題

如圖,在平面直角坐標系內,以y軸為對稱軸的拋物線經過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經過原點的拋物線大致圖象;②設沿x軸向右平移后經過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源:第27章《二次函數》中考題集(37):27.3 實踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標系內,以y軸為對稱軸的拋物線經過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經過原點的拋物線大致圖象;②設沿x軸向右平移后經過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源:2008年四川省眉山市中考數學試卷(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標系內,以y軸為對稱軸的拋物線經過直y=-x+2與y軸的交點A和點M(-,0).
(1)求這條拋物線所對應的二次函數的關系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經過原點的拋物線大致圖象;②設沿x軸向右平移后經過原點的拋物線對稱軸與直線AB相交于C點.判斷以O為圓心,OC為半徑的圓與直線AB的位置關系,并說明理由;
(3)P點是沿x軸向右平移后經過原點的拋物線對稱軸上的點,求P點的坐標,使得以O,A,C,P四點為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習冊答案