如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數(shù)是 °.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在邊AD,BC上,且DE=CF,連接OE,OF.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某小區(qū)為了排污,需鋪設(shè)一段全長為720米的排污管道,為減少施工對居民生活的影響,須縮短施工時間,實際施工時每天的工作效率比原計劃提高20%,結(jié)果提前2天完成任務(wù).設(shè)原計劃每天鋪設(shè)x米,下面所列方程正確的是( )
| A. | ﹣=2 | B. | ﹣=2 |
| C. | ﹣=2 | D. | = |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,雙曲線y=(k≠0)和拋物線y=ax2+bx(a≠0)交于A、B、C三點,其中B(3,1),C(﹣1,﹣3),直線CO交雙曲線于另一點D,拋物線與x軸交于另一點E.
(1)求雙曲線和拋物線的解析式;
(2)拋物線在第一象限部分是否存在點P,使得∠POE+∠BCD=90°?若存在,請求出滿足條件的點P的坐標;若不存在,請說明理由;
(3)如圖②過B作直線l⊥OB,過點D作DF⊥l于點F,BD與OF交于點N,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的中點C′上.若AB=6,BC=9,則BF的長為( )
| A. | 4 | B. | 3 | C. | 4.5 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)問題:計算+++…+(其中m,n都是正整數(shù),且m≥2,n≥1).
探究問題:為解決上面的數(shù)學(xué)問題,我們運用數(shù)形結(jié)合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進行探究.
探究一:計算+++…+.
第1次分割,把正方形的面積二等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式:+++…+=1﹣.
探究二:計算+++…+.
第1次分割,把正方形的面積三等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式:+++…+=1﹣,
兩邊同除以2,得+++…+=﹣.
探究三:計算+++…+.
(仿照上述方法,只畫出第n次分割圖,在圖上標注陰影部分面積,并寫出探究過程)
解決問題:計算+++…+.
(只需畫出第n次分割圖,在圖上標注陰影部分面積,并完成以下填空)
根據(jù)第n次分割圖可得等式: +++…+=1﹣ ,
所以,+++…+= ﹣ .
拓廣應(yīng)用:計算 +++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,過點O作直線與雙曲線y=(k≠0)交于A、B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸上分別取點E、F,使點A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是( )
| A. | S1=S2 | B. | 2S1=S2 | C. | 3S1=S2 | D. | 4S1=S2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如表是10支不同型號簽字筆的相關(guān)信息,則這10支簽字筆的平均價格是( )
型號 | A | B | C |
價格(元/支) | 1 | 1.5 | 2 |
數(shù)量(支) | 3 | 2 | 5 |
| A. | 1.4元 | B. | 1.5元 | C. | 1.6元 | D. | 1.7元 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com