【題目】如圖,正六邊形的邊長為,點(diǎn)為六邊形內(nèi)任一點(diǎn).則點(diǎn)到各邊距離之和是多少?

【答案】18.

【解析】

PAB的垂線AB、DE分別為H、K連接BD,由正六邊形的性質(zhì)可求出BD的長,而點(diǎn)PAFCD的距離之和PEF、BC的距離之和均為BD的長據(jù)此得出結(jié)論

PAB的垂線,分別交ABDEH、K連接BD,CGBDG

∵六邊形ABCDEF是正六邊形ABDE,AFCD,BCEF,PAFCD的距離之和PEF、BC的距離之和均為HK的長

BC=CDBCD=ABC=CDE=120°,∴∠CBD=BDC=30°,∴∠DBH=120°-30°=90°,BDHK,BD=HK

CGBD,BD=2BG=2×BC×cosCBD=2×2×=6,∴點(diǎn)P到各邊距離之和=3BD=3×6=18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潼南中學(xué)有一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子,恰在水面中心,安置在柱子頂端處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過的任一平面上,拋物線形狀如圖所示.圖建立直角坐標(biāo)系,水流噴出的高度(米)與水平距離(米)之間的關(guān)系是.請(qǐng)問:若不計(jì)其他因素,水池的半徑至少要________米才能使噴出的水流不至于落在池外.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題(不寫作法)已知:如圖,在平面直角坐標(biāo)系中.
1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);

2)求△ABC的面積;

3)在x軸上畫點(diǎn)P,使PA+PC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技改變世界.2017年底,快遞分揀機(jī)器人從微博火到了朋友圈,據(jù)介紹,這些機(jī)器人不僅可以自動(dòng)規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會(huì)感應(yīng)避讓障礙物,自動(dòng)歸隊(duì)取包裹.沒電的時(shí)候還會(huì)自己找充電樁充電.某快遞公司啟用80臺(tái)A種機(jī)器人、300臺(tái)B種機(jī)器人分揀快遞包裹.A,B兩種機(jī)器人全部投入工作,1小時(shí)共可以分揀1.44萬件包裹,若全部A種機(jī)器人工作3小時(shí),全部B種機(jī)器人工作2小時(shí),一共可以分揀3.12萬件包裹.

(1)求兩種機(jī)器人每臺(tái)每小時(shí)各分揀多少件包裹;

(2)為了進(jìn)一步提高效率,快遞公司計(jì)劃再購進(jìn)A,B兩種機(jī)器人共200臺(tái),若要保證新購進(jìn)的這批機(jī)器人每小時(shí)的總分揀量不少于7000件,求最多應(yīng)購進(jìn)A種機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD,DA運(yùn)動(dòng)至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示.

1)求ABC的面積;

2)求y關(guān)于x的函數(shù)解析式;

3)當(dāng)ABP的面積為5時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣5,0),B5,0),D2,7),連接ADy軸于C點(diǎn).

1)求C點(diǎn)的坐標(biāo);

2)動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QC點(diǎn)出發(fā)也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng)(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng)).設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.

①請(qǐng)用含x的代數(shù)式分別表示P,Q兩點(diǎn)的坐標(biāo);

②當(dāng)x2時(shí),y軸上是否存在一點(diǎn)E,使得AQE的面積與APQ的面積相等?若存在,求E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料:

問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長為,問題得到解決.

請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、Dy軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)EAC上一點(diǎn),且∠DEA=DBO,求BC+EC的長;

3)如圖3,過DDFACF點(diǎn),點(diǎn)HFC上一動(dòng)點(diǎn),點(diǎn)GOC上一動(dòng)點(diǎn),當(dāng)HFC上移動(dòng)、點(diǎn)GOC上移動(dòng)時(shí),始終滿足∠GDH=GDO+FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校把一塊形狀為直角三角形的廢地開辟為生物園,如圖所示,∠ACB=90°,AC=40m,BC=30m.線段CD是一條水渠,且D點(diǎn)在邊AB上,已知水渠的造價(jià)為800,問:當(dāng)水渠的造價(jià)最低時(shí),CD長為多少米?最低造價(jià)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案