【題目】如圖,是四邊形的對角線,AD//BC,,分別過點作、,垂足分別為點,若,則圖中全等的三角形有( )
A.對B.對C.對D.對
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-x=2;
(4)x(x-7)=8(7-x).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,A、B兩點同時從原點O出發(fā),點A以每秒x個單位長度沿x軸的負方向運動,點B以每秒y個單位長度沿y軸的正方向運動.
(1)若|x+2y-10|+|2x-y|=0,試分別求出1秒鐘后△AOB的面積;
(2)如圖2,所示,設∠BAO的鄰補角和∠ABO的鄰補角的平分線相交于點P,問:點A、B在運動的過程中,∠P的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由;
(3)如圖3所示,延長BA至E,在∠ABO的內(nèi)部作射線BF交x軸于點C,若∠EAC、∠FCA、∠ABC的平分線相交于點G,過點G作BE的垂線,垂足為H,設∠AGH=α,∠BGC=β,試探究出α和β滿足的數(shù)量關系并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠BAC=90°,AB=AC,點E為△ABC內(nèi)一點,連接AE,CE,CE⊥AE,過點B作BD⊥AE,交AE的延長線于D.
(1)如圖1,求證BD=AE;
(2)如圖2,點H為BC中點,分別連接EH,DH,求∠EDH的度數(shù);
(3)如圖3,在(2)的條件下,點M為CH上的一點,連接EM,點F為EM的中點,連接FH,過點D作DG⊥FH,交FH的延長線于點G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在今年年初,新型冠狀病毒在武漢等地區(qū)肆虐,為了緩解湖北地區(qū)的疫情,全國各地的醫(yī)療隊員都紛紛報名支援湖北,某方艙醫(yī)院需要8組醫(yī)護人員支援,要求每組分配的人數(shù)相同,若按每組人數(shù)比預定人數(shù)多分配1人,則總數(shù)會超過100人,若每組人數(shù)比預定人數(shù)少分配一人,則總數(shù)不夠90人,那么預定每組分配的人數(shù)是多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓的直徑為,在圓上位于直徑的異側有定點和動點,已知,點在半圓弧上運動(不與、重合),過作的垂線交的延長線于點.
()求證: .
()當點運動到弧中點時,求的長.
()當點運動到什么位置時, 的面積最大?并求這個最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】安慶市在精準扶貧活動中,因地制宜指導農(nóng)民調(diào)整種植結構,增加種植效益,2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預計每畝的投入與產(chǎn)出如下表:(每畝產(chǎn)出-每畝投入=每畝純收入)
種類 | 投入(元) | 產(chǎn)出(元) |
馬鈴薯 | 1000 | 4500 |
蔬菜 | 1200 | 5300 |
(1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?
(2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D為邊BA延長線上一點,連接CD,以CD為一邊作等邊三角形CDE,連接AE.
(1)求證:△CBD≌△CAE.
(2)判斷AE與BC的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com