如圖,已知四邊形ABCD是平行四邊形,∠BCD的平分線CF交邊AB于F,∠ADC的平分線DG交邊AB于G。

(1)求證:AF=GB;

(2)請你在已知條件的基礎(chǔ)上再添加一個條件,使得△EFG為等腰直角三角形,并說明理由.

 

【答案】

(1)由角平分線知∠ADG=∠CDG,由平行知∠CDG=∠AGD所以,∠ADG=∠AGD,即AD=AG,同理BF=BC,又AD=BC,所以AG=BF,去掉公共部分,則有AF=GB;(2)EF=EG

【解析】

試題分析:(1)由角平分線知∠ADG=∠CDG,由平行知∠CDG=∠AGD所以,∠ADG=∠AGD,即AD=AG,同理BF=BC,又AD=BC,所以AG=BF,去掉公共部分,則有AF=GB;

(2)由于DG、CF是平行四邊形一組鄰角的平分線,所以△EFG已經(jīng)是直角三角形了,要成為等腰直角三角形,則必須有EF=EG或者∠EFG=∠EGF即可.

(1)∵四邊形ABCD為平行四邊形

∴AB∥CD,AD∥BC,AD=BC,

∴∠AGD=∠CDG,∠DCF=∠BFC.

∵DG、CF分別平分∠ADC和∠BCD,

∴∠CDG=∠ADG,∠DCF=∠BCF.

∴∠ADG=∠AGD,∠BFC=∠BCF.

∴AD=AG,BF=BC.

∴AG=BF,即AG-FG=BF-FG

∴AF=BG;

(2)∵AD∥BC

∴∠ADC+∠BCD=180°.

∵DG、CF分別平分∠ADC和∠BCD,

∴∠EDC+∠ECD=90°.

∴∠DEC=90°.

∴∠FEG=90°.

因此我們只要保證添加的條件使得EF=EG就可以了。

我們也可以添加∠GFE=∠FGD,四邊形ABCD為矩形,DG=CF等等.

考點:平行四邊形的基本性質(zhì),直角三角形的判定,角平分線的性質(zhì)

點評:平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點,AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案