如圖,在Rt△ACB中,∠ACB=90°,CA=CB,D是斜邊AB的中點,E是DA上一點,過點B作BH⊥CE于點H,交CD于點F.
(1)求證:DE=DF;
(2)若E是線段BA的延長線上一點,其它條件不變,(1)中的結(jié)論仍成立嗎?若成立,請畫出圖形并證明;若不成立,請說明理由.

解:(1)∵△ABC是等腰Rt△,且D是AB的中點,
∴AD=CD=BD,∠CDE=∠BDF=90°;
∵∠HFC=90°-∠HCF=∠CED,
∴∠BFD=∠CED;
∴△DCE≌△DBF(AAS),
∴DE=DF.

(2)成立.圖如右圖,證明同(1).
分析:(1)由已知條件可通過AAS證Rt△BDF≌△CDE,得出DE=DF;
(2)(1)的結(jié)論仍成立,思路和證法同(1).
點評:本題考查了全等三角形的判定和性質(zhì);三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2).根據(jù)以上信息,解答下列問題:
(1)當t為何值時,以A、P、Q為頂點的三角形與△ABC相似?
(2)設(shè)四邊形PQCB的面積為y(cm2),直接寫出y與t之間的函數(shù)關(guān)系式;
(3)在點P、點Q的移動過程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個四邊形,那么是否存在某一時刻t,使組成的四邊形為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在Rt△ACB中,∠C=90°,AC=8,BC=6,CD是斜邊AB上的高.若點P在線段DB上,連接CP,sin∠APC=
2425
.求CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠C=90゜,點O為AB的中點,OE⊥OF交AC于E點、交BC于F點,EM⊥AB,F(xiàn)N⊥AB,垂足分別為M、N,
求證:AM=ON.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于點E,過E作ED⊥AB于D點,當∠A=
30°
30°
 時,ED恰為AB的中垂線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于
40°
40°

查看答案和解析>>

同步練習冊答案