矩形ABCD的對角線AC,BD相交于點(diǎn)O,AC=4數(shù)學(xué)公式,BC=4,在線段AC上取一點(diǎn)E,使△CDE為等腰三角形,請你畫出圖形,直接寫出OE的長,并畫出體現(xiàn)解法的輔助線.

解:∵AC=4,BC=4,
∴AB=8,
∵△CDE為等腰三角形,
∴當(dāng)CD=CE時(shí),EC=CD=8,
∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,AC=4
∴AO=CO=2,
∴EO=AO-AE=AO-(AC-CD)=8-2
當(dāng)ED=CE時(shí),E,O重合,△CED是等腰三角形,此時(shí)EO=0.
分析:根據(jù)矩形的性質(zhì)以及勾股定理求出AB的長,進(jìn)而根據(jù)當(dāng)CD=CE時(shí),當(dāng)ED=CE時(shí)求出EO即可.
點(diǎn)評:此題主要考查了應(yīng)用設(shè)計(jì)與作圖以及矩形的性質(zhì)和勾股定理,熟練利用矩形性質(zhì)得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、沿矩形ABCD的對角線BD翻折△ABD得△A′BD,A′D交BC于F,如圖所示,△BDF是何種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:矩形ABCD的對角線AC=10,BC=8,則圖中五個(gè)小矩形的周長之和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=2
3
,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)設(shè)EG與矩形ABCD的對角線AC的交點(diǎn)為H,是否存在這樣的t,使△AOH是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•撫順)若矩形ABCD的對角線長為10,點(diǎn)E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的周長是
20
20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)O,∠AOD=120°,AB=5cm,則矩形對角線的長是
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案