【題目】因式分解:a3﹣9a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B是線段AD上一動(dòng)點(diǎn),沿A至D的方向以2cm/s的速度運(yùn)動(dòng),C是線段BD的中點(diǎn),AD=10cm.設(shè)點(diǎn)B運(yùn)動(dòng)的時(shí)間為t s.
(1)當(dāng)t=2 s時(shí),①AB=cm;
②求線段CD的長度.
(2)在運(yùn)動(dòng)過程中,若線段AB的中點(diǎn)為E,則EC的長是否變化?若不變。求出EC的長;若發(fā)生變化,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,受經(jīng)濟(jì)危機(jī)影響,電腦價(jià)格不斷下降.今年三月份的電腦售價(jià)比去年同期每臺(tái)降價(jià)1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺(tái)售價(jià)多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦,已知甲種電腦每臺(tái)進(jìn)價(jià)為3500元,乙種電腦每臺(tái)進(jìn)價(jià)為3000元,公司預(yù)計(jì)用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種電腦共15臺(tái),共有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,E是CD的中點(diǎn),F(xiàn)是BC上的一點(diǎn),且∠AEF=90°,延長AE交BC的延長線于點(diǎn)G.
(1)求GE的長;
(2)求證:AE平分∠DAF;
(3)求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD,AB>AD,分別以點(diǎn)A,C為圓心,以AD,CB長為半徑作弧,交AB,CD于點(diǎn)E,F(xiàn),連接AF,CE.求證:AF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,AB=5,對角線BD=8,作AE⊥BC于點(diǎn)E,CF⊥AD于點(diǎn)F,連接EF,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以點(diǎn)(﹣3,4)為圓心,4為半徑的圓( )
A.與x軸相交,與y軸相切
B.與x軸相離,與y軸相交
C.與x軸相切,與y軸相交
D.與x軸相切,與y軸相離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點(diǎn)A(﹣3,0),點(diǎn)C(0,4),作CD∥x軸交拋物線于點(diǎn)D,作DE⊥x軸,垂足為E,動(dòng)點(diǎn)M從點(diǎn)E出發(fā)在線段EA上以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)在線段AC上以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)設(shè)△DMN的面積為S,求S與t的函數(shù)關(guān)系式;
(3)①當(dāng)MN∥DE時(shí),直接寫出t的值;
②在點(diǎn)M和點(diǎn)N運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使MN⊥AD?若存在,直接寫出此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com