(2003•金華)在下列幾何體中,軸截面是等腰梯形的是( )
A.圓錐
B.圓臺
C.圓柱
D.球
【答案】分析:首先可排除C、D,再根據(jù)圓錐、圓臺的形狀特點判斷即可.
解答:解:圓錐的軸截面是等腰三角形,圓柱的軸截面是長方形,球的軸截面是圓.
因為根據(jù)圓臺的定義:以直角梯形垂直于底邊的腰所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓臺.旋轉(zhuǎn)軸叫做圓臺的軸.那么它的軸截面就應(yīng)該是等腰梯形.
故選B.
點評:本題考查幾何體的截面,關(guān)鍵要理解面與面相交得到線.注意圓臺的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•金華)已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(A點在原點左側(cè),B點在原點右側(cè)),與y軸交于C點.若AB=4,OB>OA,且OA、OB是方程x2+kx+3=0的兩根.
(1)請求出A,B兩點的坐標(biāo);
(2)若點O到BC的距離為,求此二次函數(shù)的解析式;
(3)若點P的橫坐標(biāo)為2,且△PAB的外心為M(1,1),試判斷點P是否在(2)中所求的二次函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年浙江省衢州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•金華)已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(A點在原點左側(cè),B點在原點右側(cè)),與y軸交于C點.若AB=4,OB>OA,且OA、OB是方程x2+kx+3=0的兩根.
(1)請求出A,B兩點的坐標(biāo);
(2)若點O到BC的距離為,求此二次函數(shù)的解析式;
(3)若點P的橫坐標(biāo)為2,且△PAB的外心為M(1,1),試判斷點P是否在(2)中所求的二次函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形認識初步》(01)(解析版) 題型:選擇題

(2003•金華)在下列幾何體中,軸截面是等腰梯形的是( )
A.圓錐
B.圓臺
C.圓柱
D.球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年浙江省金華市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•金華)在下列幾何體中,軸截面是等腰梯形的是( )
A.圓錐
B.圓臺
C.圓柱
D.球

查看答案和解析>>

同步練習(xí)冊答案