【題目】如圖,矩形ABCD,AB=2,BC=10,點(diǎn)E為AD上一點(diǎn),且AE=AB,點(diǎn)F從點(diǎn)E出發(fā),向終點(diǎn)D運(yùn)動(dòng),速度為1cm/s,以BF為斜邊在BF上方作等腰直角△BFG,以BG,BF為鄰邊作BFHG,連接AG.設(shè)點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒.
(1)試說明:△ABG∽△EBF;
(2)當(dāng)點(diǎn)H落在直線CD上時(shí),求t 的值;
(3)點(diǎn)F從E運(yùn)動(dòng)到D的過程中,直接寫出HC的最小值.
【答案】(1)證明見解析;(2);(3)HC最小值是
【解析】
(1)根據(jù)兩邊成比例夾角相等即可證明兩三角形相似;
(2)構(gòu)建如圖2平面直角坐標(biāo)系,作HM⊥AD于M,GN⊥AD于N.設(shè)AM交BG于K.首先證明△GFN≌△FHM,想辦法求出點(diǎn)H的坐標(biāo),構(gòu)建方程即可解決問題;
(3)由(2)可知H(2t,4t),令x=2t,y=4t,消去t得到y.推出點(diǎn)H在直線y上運(yùn)動(dòng),根據(jù)垂線段最短即可解決問題.
(1)如圖1.
∵△ABE,△BGF都是等腰直角三角形,∴.
∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.
(2)如圖2構(gòu)建如圖平面直角坐標(biāo)系,作HM⊥AD于M,GN⊥AD于N.設(shè)AM交BG于K.
∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM.
∵△ABG∽△EBF,∴,∠AGB=∠EFB.
∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°.
∵EF=t,∴AGt,∴AN=GN=FMt,∴AM=2t,HM=FN=2t,∴H(2t,4t),當(dāng)點(diǎn)H在直線CD上時(shí),2t=10,解得:t.
(3)由(2)可知H(2t,4t),令x=2t,y=4t,消去t得到y,∴點(diǎn)H在直線y上運(yùn)動(dòng),如圖3,作CH垂直直線y垂足為H.
根據(jù)垂線段最短可知,此時(shí)CH的長最小,易知直線CH的解析式為y=﹣3x+30,由,解得:,∴H(8,6).
∵C(10,0),∴CH,∴HC最小值是2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價(jià)y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.
(1)求該產(chǎn)品銷售價(jià)y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(3)當(dāng)產(chǎn)量為多少時(shí),這種產(chǎn)品獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年2月27日,在中央全面深化改革領(lǐng)導(dǎo)小組第十次會(huì)議上,審議通過了《中國足球改革總體方案》,體制改革、聯(lián)賽改革、校園足球等成為改革的亮點(diǎn).在聯(lián)賽方面,作為國內(nèi)最高水平的聯(lián)賽﹣﹣中國足球超級(jí)聯(lián)賽今年已經(jīng)進(jìn)入第12個(gè)年頭,中超聯(lián)賽已經(jīng)引起了世界的關(guān)注.圖9是某一年截止倒數(shù)第二輪比賽各隊(duì)的積分統(tǒng)計(jì)圖.
(1)根據(jù)圖,請計(jì)算該年有_____支中超球隊(duì)參賽;
(2)補(bǔ)全圖一中的條形統(tǒng)計(jì)圖;
(3)根據(jù)足球比賽規(guī)則,勝一場得3分,平一場得1分,負(fù)一場得0分,最后得分最高者為冠軍.倒數(shù)第二輪比賽后積分位于前4名的分別是A隊(duì)49分,B隊(duì)49分,C隊(duì)48分,D隊(duì)45分.在最后一輪的比賽中,他們分別和第4名以后的球隊(duì)進(jìn)行比賽,已知在已經(jīng)結(jié)束的一場比賽中,A隊(duì)和對(duì)手打平.請用列表或者畫樹狀圖的方法,計(jì)算C隊(duì)奪得冠軍的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開闊學(xué)生的視野,積極組織學(xué)生參加課外讀書活動(dòng).“放飛夢想”讀書小組協(xié)助老師隨機(jī)抽取本校的部分學(xué)生,調(diào)查他們最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他等四類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請你結(jié)合圖中的信息解答下列問題:
(1)求被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有1200名學(xué)生,估計(jì)全校最喜愛文學(xué)類圖書的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把分別標(biāo)有數(shù)字2、3、4、5的四個(gè)小球放入A袋內(nèi),把分別標(biāo)有數(shù)字的五個(gè)小球放入B袋內(nèi),所有小球的形狀、大小、質(zhì)地完全相同,A、B兩個(gè)袋子不透明。
(1)小明分別從A、B兩個(gè)袋子中各摸出一個(gè)小球,求這兩個(gè)小球上的數(shù)字互為倒數(shù)的概率;
(2)當(dāng)B袋中標(biāo)有的小球上的數(shù)字變?yōu)?/span> 時(shí)(填寫所有結(jié)果),(1)中的概率為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)此次共調(diào)查了多少位學(xué)生?
(2)將表格填充完整;
步行 | 騎自行車 | 坐公共汽車 | 其他 |
50 |
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B 坐標(biāo)為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)點(diǎn)E是x軸上一點(diǎn),且△AOE是等腰三角形,請直接寫出所有符合條件的E點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com