一個邊長為3厘米的正方形,若它的邊長增加厘米,面積隨之增加平方厘米,則關于的函數(shù)解析式是    .(不寫定義域)
.

試題分析:首先表示出原邊長為3厘米的正方形面積,再表示出邊長增加x厘米后正方形的面積,再根據(jù)面積隨之增加y平方厘米可列出方程.
原邊長為3厘米的正方形面積為:3×3=9(平方厘米),
邊長增加x厘米后邊長變?yōu)椋簒+3,
則面積為:(x+3)2平方厘米,
∴y=(x+3)2-9=x2+6x.
故答案為:y=x2+6x.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=-2x+4與x軸、y軸分別相交于A、C兩點,拋物線y=-2x2+bx+c (a≠0)經(jīng)過點A、C.

(1)求拋物線的解析式;
(2)設拋物線的頂點為P,在拋物線上存在點Q,使△ABQ的面積等于△APC面積的4倍.求出點Q的坐標;
(3)點M是直線y=-2x+4上的動點,過點M作ME垂直x軸于點E,在y軸(原點除外)上是否存在點F,使△MEF為等腰直角三角形? 若存在,求出點F的坐標及對應的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過A(-1,0),B(3,0),C(0,-3)三點,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y=2x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品,根據(jù)市場調研,發(fā)現(xiàn)如下兩種信息:
信息一:銷售甲款護膚品所獲利潤y(元)與銷售量x(件)之間存在二次函數(shù)關系y=ax2+bx.在x=10時,y=140;當x=30時,y=360.
信息二:銷售乙款護膚品所獲利潤y(元)與銷售量x(件)之間存在正比例函數(shù)關系y=3x.請根據(jù)以上信息,解答下列問題;
(1)求信息一中二次函數(shù)的表達式;
(2)該相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品共100件,請設計一個營銷方案,使銷售甲、乙兩款護膚品獲得的利潤之和最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,二次函數(shù)的圖像經(jīng)過點和點B,其中點B在第一象限,且OA=OB,cot∠BAO=2.

(1)求點B的坐標;
(2)求二次函數(shù)的解析式;
(3)過點B作直線BC平行于x軸,直線BC與二次函數(shù)圖像的另一個交點為C,聯(lián)結AC,如果點P在x軸上,且△ABC和△PAB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CE⊥AB于E,設∠ABC=α(60°≤α<90°).

(1)當α=60°時,求CE的長;
(2)當60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當CE2-CF2取最大值時,求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=x2-(m-1)x+4的圖像與x軸有且只有一個交點,則m的值為(  )
A.1或-3B.5或-3C.-5或3D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,函數(shù)的圖象大致是下圖的

查看答案和解析>>

同步練習冊答案