【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作O的切線交邊BC于N.

(1)求證:△ODM∽△MCN;

(2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

(3)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)CMN的周長(zhǎng)為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

【答案】1證明見解析20x8)(3在點(diǎn)O的運(yùn)動(dòng)過程中,CMN的周長(zhǎng)P始終為16,是一個(gè)定值

【解析】試題分析:(1)依題意可得∠OMC=∠MNC,然后可證得△ODM∽△MCN.
(2)設(shè)DM=x,OA=OM=R,OD=AD-OA=8-R,根據(jù)勾股定理求出OA的值.
(3)由1可求證△ODM∽△MCN,利用線段比求出CN,MN的值.然后可求出△CMN的周長(zhǎng)等于CM+CN+MN,把各個(gè)線段消去代入可求出周長(zhǎng).

試題解析:

(1)證明:MN切O于點(diǎn)M,

∴∠OMN=90°;

∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;

∴∠OMD=∠MNC;

∵∠D=∠C=90°;

∴△ODM∽△MCN,

(2)在RtODM中,DM=x,設(shè)OA=OM=R;

OD=AD﹣OA=8﹣R,

由勾股定理得:(8﹣R)2+x2=R2,

∴64﹣16R+R2+x2=R2,

OA=R= ;

(3)∵CM=CD﹣DM=8﹣x,

OD=8-R=8-,

且有△ODM∽△MCN,

,

代入得到CN=;

同理,

代入得到MN= ;

∴△CMN的周長(zhǎng)為P=CM+CN+MN=(8-x)+ =16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將1個(gè)黑球和若干個(gè)白球入放一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球試驗(yàn),每次摸出一個(gè)球(有放回),統(tǒng)計(jì)數(shù)據(jù)如下表:

摸球的次數(shù)(n

100

150

200

500

800

1000

摸到黑球的次數(shù)(m

23

31

60

130

203

251

摸到黑球的頻率(m/n

0.230

0.207

0.300

0.260

0.254

(1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),并根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是 ;

(2)估計(jì)口袋中白球的個(gè)數(shù);

(3)在(2)的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖法或列表法計(jì)算他兩次都摸出白球的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖線段AB的端點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到線段AC

1)請(qǐng)你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過的路徑;

2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為 ;

3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為 ;

4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是等腰三角形,AB=AC,點(diǎn)D,EF分別在AB,BC,AC邊上,且BD=CE,BE=CF

1)求證:DEF是等腰三角形;

2)猜想:當(dāng)∠A滿足什么條件時(shí),DEF是等邊三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行“行動(dòng)起來,對(duì)抗霧霾”為主題的植樹活動(dòng),某街道積極響應(yīng),決定對(duì)該街道進(jìn)行綠化改造,共購(gòu)進(jìn)甲、乙兩種樹共500棵,已知甲樹每棵800元,乙樹每棵1200元.

(1)若購(gòu)買兩種樹總金額為560000元,求甲、乙兩種樹各購(gòu)買了多少棵?

(2)若購(gòu)買甲樹的金額不少于購(gòu)買乙樹的金額,至少應(yīng)購(gòu)買甲樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時(shí)從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.

1求乙騎自行車的速度;

2當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CAB=30°,AB=10,點(diǎn)D在線段AB上,AD=2.點(diǎn)P,Q以相同的速度從D點(diǎn)同時(shí)出發(fā),點(diǎn)P沿DB方向運(yùn)動(dòng),點(diǎn)Q沿DA方向到點(diǎn)A后立刻以原速返回向點(diǎn)B運(yùn)動(dòng).以PQ為直徑構(gòu)造⊙O,過點(diǎn)P作⊙O的切線交折線AC﹣CB于點(diǎn)E,將線段EP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到EF,過FFGEPG,當(dāng)P運(yùn)動(dòng)到點(diǎn)B時(shí),Q也停止運(yùn)動(dòng),設(shè)DP=m.

(1)當(dāng)2<m≤8時(shí),AP=,AQ=.(用m的代數(shù)式表示)

(2)當(dāng)線段FG長(zhǎng)度達(dá)到最大時(shí),求m的值;

(3)在點(diǎn)P,Q整個(gè)運(yùn)動(dòng)過程中,

①當(dāng)m為何值時(shí),⊙O與△ABC的一邊相切?

②直接寫出點(diǎn)F所經(jīng)過的路徑長(zhǎng)是.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當(dāng)10≤t≤30時(shí),Rt之間的關(guān)系式;

(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),Rt之間的關(guān)系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

同步練習(xí)冊(cè)答案