如圖,O是已知線段AB上一點(diǎn),以O(shè)B為半徑的⊙O交線段AB于點(diǎn)C,以線段AO為直徑的半圓交⊙O于點(diǎn)D,過(guò)點(diǎn)B作AB的垂線與AD的延長(zhǎng)線交于點(diǎn)E;
(1)求證:AE切⊙O于點(diǎn)D;
(2)若AC=2,且AC、AD的長(zhǎng)是關(guān)于x的方程x2-kx+4
5
=0
的兩根,求線段EB的長(zhǎng).
(1)證明:連接OD.
∵AO為半圓直徑,∴∠ADO=90°.
∴AE切⊙O于點(diǎn)D;

(2)∵AC、AD的長(zhǎng)是關(guān)于x的方程x2-kx+4
5
=0
的兩根,
∴AC•AD=4
5

∵AC=2,
∴AD=2
5

設(shè)OD=OC=x,則(x+2)2=(2
5
2+x2
解得x=4.
∴AB=2+8=10.
∵∠ADO=∠ABE=90°,∠A=∠A,
∴△AOD△AEB,
OD
BE
=
AD
AB
,即
4
BE
=
2
5
10
,
∴BE=4
5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,BC=3,AC=4,D為AC上一點(diǎn),以CD為直徑的⊙O切AB于點(diǎn)E.求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于D,且CO=CD,則∠PCA=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=BC,過(guò)點(diǎn)A的切線與OC的延長(zhǎng)線相交于點(diǎn)D,∠BAC=75°,CD=
3
,則AD的長(zhǎng)為( 。
A.2
3
B.3C.3
3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,割線ABC與⊙O相交于B、C兩點(diǎn),D為⊙O上一點(diǎn),E為弧BC的中點(diǎn),OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證:AD是⊙O的切線;
(2)如果AB=2,AD=4,EG=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知等邊△ABC,以邊BC為直徑的半圓與邊AB,AC分別交于點(diǎn)D,點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過(guò)點(diǎn)F作FH⊥BC,垂足為點(diǎn)H.若等邊△ABC的邊長(zhǎng)為4,求FH的長(zhǎng).
(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過(guò)C、D兩點(diǎn),與斜邊AB交于點(diǎn)E,連接BO、ED,有BOED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為5,sin∠DFE=
3
5
,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,直線EF與⊙O相切于點(diǎn)C,AB是⊙O的直徑,且BC=3,Ac=4.
(1)求半徑OC的長(zhǎng);
(2)在切線EF上找一點(diǎn)M,使得以B、M、C為頂點(diǎn)的三角形與△ACO相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說(shuō)明點(diǎn)D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案