(2013•拱墅區(qū)一模)如圖,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動變化的過程中,有下列結(jié)論:
①四邊形CEDF有可能成為正方形;②△DFE是等腰直角三角形;③四邊形CEDF的面積是定值;④點(diǎn)C到線段EF的最大距離為
2
.其中正確的結(jié)論是(  )
分析:①當(dāng)E為AC中點(diǎn),F(xiàn)為BC中點(diǎn)時(shí),四邊形CEDF為正方形;
②作常規(guī)輔助線連接CD,由SAS定理可證△CDF和△ADE全等,從而可證∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;
③由②△ADE≌△CDF,就有S△ADE=S△CDF,再通過等量代換就可以求出結(jié)論;
④△DEF是等腰直角三角形,
2
DE=EF,當(dāng)DF與BC垂直,即DF最小時(shí),F(xiàn)E取最小值2
2
,此時(shí)點(diǎn)C到線段EF的最大距離.
解答:解:①當(dāng)E、F分別為AC、BC中點(diǎn)時(shí),四邊形CDFE是正方形,故此選項(xiàng)正確;
②①連接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵在△ADE和△CDF中,
AE=CF
∠A=∠DCF
AD=CD

∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.故此選項(xiàng)正確;
③∵△ADE≌△CDF,
∴S△ADE=S△CDF
∵S四邊形CEDF=S△CED+S△CFD,
∴S四邊形CEDF=S△CED+S△AED,
∴S四邊形CEDF=S△ADC
∵S△ADC=
1
2
S△ABC=4.
∴四邊形CEDF的面積是定值4,故本選項(xiàng)正確;
④④△DEF是等腰直角三角形,
2
DE=EF,
當(dāng)EF∥AB時(shí),∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點(diǎn),故EF是△ABC的中位線,
∴EF取最小值=
22+22
=2
2
,
∵CE=CF=2,
∴此時(shí)點(diǎn)C到線段EF的最大距離為
1
2
EF=
2
.故此選項(xiàng)正確.
故選D.
點(diǎn)評:本題主要考查了全等三角形的判定與性質(zhì)以及正方形、等腰三角形、直角三角形性質(zhì)等知識,根據(jù)圖形利用割補(bǔ)法可知四邊形CEDF的面積等于正方形CMDN面積是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)下列計(jì)算或化簡正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)下列因式分解正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)某校在七年級設(shè)立了六個(gè)課外興趣小組,每個(gè)參加者只能參加一個(gè)興趣小組,如圖是六個(gè)興趣小組不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖. 根據(jù)圖中信息,可得下列結(jié)論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)下列說法中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•拱墅區(qū)一模)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象一部分如圖所示,對于下列說法:①abc>0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案