如圖,已知△ABD和△ACE,AD=AE,∠1=∠2,要判定△ABD≌△ACE,還需要添加一個條件,這個條件可以是
AB=AC
AB=AC
分析:添加AB=AC,再由∠1=∠2,可得∠1+∠CAD=∠2+∠CAD,進而得到∠BAD=∠CAE,然后再加上條件AD=AE可證明△ABD≌△ACE.
解答:解:添加AB=AC,
∵∠1=∠2,
∴∠1+∠CAD=∠2+∠CAD,
即∠BAD=∠CAE,
在△ABD和△ACE中
AB=AC
∠BAD=∠CAE
AD=AE
,
∴△ABD≌△ACE(SAS),
故答案為:AB=AC.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•江門模擬)如圖,已知△ABD和△ACE都是等邊三角形,CD、BE相交于點F.
(1)求證:△ABE≌△ADC;
(2)△ABE可由△ADC經(jīng)過怎樣的旋轉(zhuǎn)變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABD和△ACE都是等邊三角形,CD、BE相交于點F.
(1)求證:△ABE≌△ADC;
(2)△ABE可由△ADC經(jīng)過怎樣的旋轉(zhuǎn)變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省江門市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

如圖,已知△ABD和△ACE都是等邊三角形,CD、BE相交于點F.
(1)求證:△ABE≌△ADC;
(2)△ABE可由△ADC經(jīng)過怎樣的旋轉(zhuǎn)變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABD和△ACE都是等邊三角形,那么△ADC≌△ABE的根據(jù)是(    )

A.邊邊邊           B.邊角邊           C.角邊角           D.角角邊

查看答案和解析>>

同步練習(xí)冊答案