拋物線y=ax2+bx+c(a≠0)過點A(1,-3),B(3,-3),C(-1,5),頂點為M點.
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點P,使∠POM=90°.若不存在,說明理由;若存在,求出P點的坐標(biāo).
(3)試判斷拋物線上是否存在一點K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點的坐標(biāo).
(1)根據(jù)題意,得
a+b+c=-3
9a+3b+c=-3
a-b+c=5
,解得
a=1
b=-4
c=0
,
∴拋物線的解析式為y=x2-4x;

(2)拋物線上存在一點P,使∠POM=90?.
x=-
b
2a
=-
-4
2
=2,y=
4ac-b2
4a
=
-16
4
=-4,
∴頂點M的坐標(biāo)為(2,-4),
設(shè)拋物線上存在一點P,滿足OP⊥OM,其坐標(biāo)為(a,a2-4a),
過P點作PE⊥y軸,垂足為E;過M點作MF⊥y軸,垂足為F.
則∠POE+∠MOF=90?,∠POE+∠EPO=90?.
∴∠EPO=∠FOM.
∵∠OEP=∠MFO=90?,
∴Rt△OEPRt△MFO.
∴OE:MF=EP:OF.
即(a2-4a):2=a:4,
解得a1=0(舍去),a2=
9
2
,
∴P點的坐標(biāo)為(
9
2
,
9
4
);

(3)過頂點M作MN⊥OM,交y軸于點N.則∠FMN+∠OMF=90?.
∵∠MOF+∠OMF=90?,
∴∠MOF=∠FMN.
又∵∠OFM=∠MFN=90?,
∴△OFM△MFN.
∴OF:MF=MF:FN.即4:2=2:FN.∴FN=1.
∴點N的坐標(biāo)為(0,-5).
設(shè)過點M,N的直線的解析式為y=kx+b,則
2k+b=-4
b=-5
,
解得
k=
1
2
b=-5
,∴直線的解析式為y=
1
2
x-5,
聯(lián)立
y=
1
2
x-5
y=x2-4x
得x2-
9
2
x+5=0,解得x1=2,x2=
5
2
,
∴直線MN與拋物線有兩個交點(其中一點為頂點M).
另一個交點K的坐標(biāo)為(
5
2
,-
15
4
),
∴拋物線上必存在一點K,使∠OMK=90?.坐標(biāo)為(
5
2
,-
15
4
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當(dāng)點P與點C重合時停止運動.設(shè)點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B,C兩點的坐標(biāo)及圖2中OF的長;
(3)在圖1中,當(dāng)動點P恰為經(jīng)過O,B兩點的拋物線W的頂點時,
①求此拋物線W的解析式;
②若點Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點R,滿足以B,P,Q,R四點為頂點的四邊形是菱形,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點,與y軸交于點C,A點坐標(biāo)為(-1,0)
(1)求m的值和點B的坐標(biāo);
(2)過A、B、C的三點的⊙M交y軸于另一點D,設(shè)P為弧CBD上的動點P(P不與C、D重合),連接AP交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請求出常數(shù)k;如果不存在,請說明理由;
(3)連接DM并延長交BC于N,交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點,與y軸于點C,點D為對稱軸l上的一個動點.
(1)求當(dāng)AD+CD最小時,點D的坐標(biāo);
(2)以點A為圓心,以AD為半徑作⊙A
①證明:當(dāng)AD+CD最小時,直線BD與⊙A相切.
②寫出直線BD與⊙A相切時,D點的另一個坐標(biāo)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC是邊長3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達點B時,P、Q兩點停止運動.設(shè)點P的運動時間為t(s),解答下列問題:
(1)當(dāng)t為何值時,△PBQ是直角三角形?
(2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說明理由;
(3)設(shè)PQ的長為x(cm),試確定y與x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,∠A=90°,AB=4,AC=3.M是邊AB上的動點(M不與A,B重合),MNBC交AC于點N,△AMN關(guān)于MN的對稱圖形是△PMN.設(shè)AM=x.
(1)用含x的式子表示△AMN的面積(不必寫出過程);
(2)當(dāng)x為何值時,點P恰好落在邊BC上;
(3)在動點M的運動過程中,記△PMN與梯形MBCN重疊部分的面積為y,試求y關(guān)于x的函數(shù)關(guān)系式;并求x為何值時,重疊部分的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,工人師傅要用長2米寬10厘米的塑鋼條作窗戶內(nèi)的橫、縱梁(沒有余料)要使窗戶內(nèi)的透光部分面積最大,問窗戶的兩邊長分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰直角三角形的斜邊長為x,面積為y,則y與x的函數(shù)關(guān)系式為______.

查看答案和解析>>

同步練習(xí)冊答案