分析 直接利用等腰三角形的判定與性質(zhì)得出DE=AE=20,進而求出EF的長,再得出四邊形ACDF為矩形,則CD=AF=AE+EF求出答案.
解答 解:過點D作l1的垂線,垂足為F,
∵∠DEB=60°,∠DAB=30°,
∴∠ADE=∠DEB-∠DAB=30°,
∴△ADE為等腰三角形,
∴DE=AE=20,
在Rt△DEF中,EF=DE•cos60°=20×$\frac{1}{2}$=10,
∵DF⊥AF,
∴∠DFB=90°,
∴AC∥DF,
由已知l1∥l2,
∴CD∥AF,
∴四邊形ACDF為矩形,CD=AF=AE+EF=30,
答:C、D兩點間的距離為30m.
點評 此題主要考查了兩點之間的距離以及等腰三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系,得出EF的長是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{\sqrt{3}}{2}$-$\frac{π}{6}$ | D. | $\frac{\sqrt{3}}{3}$-$\frac{π}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 75°36′ | B. | 75°12′ | C. | 74°36′ | D. | 74°12′ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com