如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,且tan∠CDA=
2
3

①求
OB
BE
的值;
②若BC=6,求CD、BE的長.
考點:切線的判定,相似三角形的判定與性質(zhì)
專題:
分析:(1)連OD,OE,根據(jù)圓周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;
(2)根據(jù)切線的性質(zhì)得到ED=EB,OE⊥BD,則∠ABD=∠OEB,得到tan∠CDA=tan∠OEB=
OB
BE
=
2
3
,易證Rt△CDO∽Rt△CBE,得到
CD
CB
=
OD
BE
=
OB
BE
=
2
3
,求得CD,然后在Rt△CBE中,運用勾股定理可計算出BE的長.
解答:
(1)證明:連OD,OE,如圖,
∵AB為直徑,
∴∠ADB=90°,即∠ADO+∠1=90°,
又∵∠CDA=∠CBD,
而∠CBD=∠1,
∴∠1=∠CDA,
∴∠CDA+∠ADO=90°,即∠CDO=90°,
∴CD是⊙O的切線;

(2)①解:∵EB為⊙O的切線,
∴ED=EB,OE⊥DB,
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,
∴∠ABD=∠OEB,
∴∠CDA=∠OEB.
而tan∠CDA=
2
3
,
∴tan∠OEB=
OB
BE
=
2
3
,
OB
BE
=
2
3



②∵Rt△CDO∽Rt△CBE,
CD
CB
=
OD
BE

∵OB=OD,
CD
CB
=
OB
BE
=
2
3
,
∴CD=
2
3
×6=4,
在Rt△CBE中,設(shè)BE=x,
∴(x+4)2=x2+62
解得x=
5
2

即BE的長為
5
2
點評:本題考查了切線的判定與性質(zhì):過半徑的外端點與半徑垂直的直線是圓的切線;也考查了圓周角定理的推論以及三角形相似的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(-
1
3
-3-
12
+3tan30°-|3-2
3
|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

提出問題:在△ABC中,已知AB=
5
,BC=
10
,AC=
13
,求這個三角形的面積.小明同學(xué)在解答這個題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出這個格點三角形(即三角形三個頂點都在小正方形的頂點處)如圖①所示,這樣就不用求三角形的高,而借用網(wǎng)格就能計算出三角形的面積了.
(1)請你將△ABC的面積直接寫出來:
 

問題延伸:
(2)我們把上述求三角形面積的方法叫構(gòu)圖法.若△ABC三邊長分別為2
2
a
,
13
a
,
17
a
(a>0),
請利用圖②的正方形網(wǎng)格(每個小正方形邊長是a)畫出相應(yīng)的△ABC,并寫出它的面積
 

探索創(chuàng)新:
(3)若△ABC三邊長分別為2
m2+n2
,
9m2+4n2
,
m2+16n2
(m>0,n>0,且m≠n)試用構(gòu)圖法求這個三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E、F分別是AD上的兩點,AB∥CD,AB=CD,AF=DE.
求證:CE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組
x-1≥0
2(x+2)>3x
并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(a+2)2-(a+1)(a-1),其中a=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(x+1)(x-1)-x(x-1),其中x=
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一次函數(shù)y=kx+b(k為常數(shù),k≠0)的圖象經(jīng)過(0,-1),且y隨x的增大而減小,則一次函數(shù)的解析式可以是
 
(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案