【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.
【答案】(50﹣).
【解析】
過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.
如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N,
則AB=MN,AM=BN.
在直角△ACM,∵∠ACM=45°,AM=50m,
∴CM=AM=50m.
∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
∴CN===(m),
∴MN=CMCN=50(m).
則AB=MN=(50)m.
故答案是:(50).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題,需鋪設(shè)一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( )
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;當(dāng)時(shí),;,其中錯(cuò)誤的結(jié)論有
A. ②③ B. ②④ C. ①③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的兩根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)C,B的橫坐標(biāo),且此拋物線過點(diǎn)A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為P,對稱軸與線段AC相交于點(diǎn)G,則P點(diǎn)坐標(biāo)為 ,G點(diǎn)坐標(biāo)為 ;
(3)在x軸上有一動(dòng)點(diǎn)M,當(dāng)MG+MA取得最小值時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:y-2與x3成正比例,且x=4時(shí)y=8.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)y=-6時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC.
(1)如圖(1),∠C>∠B,若 AD⊥BC 于點(diǎn) D,AE 平分∠BAC,你能找出∠EAD 與∠B,∠C 之間的數(shù)量關(guān)系嗎?并說明理由.
(2)如圖(2),AE 平分∠BAC,F 為 AE 上一點(diǎn),FM⊥BC 于點(diǎn) M,∠EFM 與∠B,∠C之間有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點(diǎn)C在OM上,OC=5,且點(diǎn)C到OA的距離為3.過點(diǎn)C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA不垂直時(shí)(如圖2),上述結(jié)論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA的反向延長線相交于點(diǎn)D時(shí):
①請?jiān)趫D3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com