設(shè)x=
t+1
-
t
t+1
+
t
,y=
t+1
+
t
t+1
-
t
,t取何值時,代數(shù)式20x2+41xy+20y2的值為2001.
分析:把x、y的值化簡,再把20x2+41xy+20y2寫成20(x+y)2+xy的形式,代入計算即可.
解答:解:∵x=
t+1
-
t
t+1
+
t
=(
t+1
-
t
2
=2t+1-2
t(t+1)
,y=
t+1
+
t
t+1
t
=(
t+1
+
t
2
=2t+1+2
t(t+1)
,
∴20x2+41xy+20y2=20(x+y)2+xy=20×(2t+1-2
t(t+1)
+2t+1+2
t(t+1)
2+1=20(4t+2)2+1=320t2+320t+81
根據(jù)題意可得,320t2+320t+81=2001,
整理得,t2+t-6=0,
解得,t=2或-3(不合題意,舍去).
∴t=2時,代數(shù)式20x2+41xy+20y2的值為2001.
點(diǎn)評:此題考查分母有理化和代數(shù)式求值,把代數(shù)式變形可使運(yùn)算簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•晉江市質(zhì)檢)已知直線y=kx-6(k>0)分別交x軸、y軸于A、B兩點(diǎn),線段OA上有一動點(diǎn)P由原點(diǎn)O向點(diǎn)A運(yùn)動,速度為每秒1個單位長度,過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,設(shè)運(yùn)動時間為t秒.
(1)填空:點(diǎn)P的坐標(biāo)為(
t
t
,
0
0
);
(2)當(dāng)k=1時,線段OA上另有一動點(diǎn)Q由點(diǎn)A向點(diǎn)O運(yùn)動,它與點(diǎn)P以相同速度同時出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時兩點(diǎn)同時停止運(yùn)動,如圖①.作BF⊥PC于點(diǎn)F,若以B、F、Q、P為頂點(diǎn)的四邊形是平行四邊形,求t的值.
(3)當(dāng)k=
34
時,設(shè)以C為頂點(diǎn)的拋物線y=(x+m)2+n與直線AB的另一交點(diǎn)為D(如圖②),設(shè)△COD的OC邊上的高為h,問:是否存在某個時刻t,使得h有最大值?若存在,試求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊(duì)打水,水桶有大有。麄冊撛鯓优抨(duì)才能使得總的排隊(duì)時間最短?
假設(shè)只有兩個人時,設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊(duì)時間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊(duì)打水,要使總的排隊(duì)時間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時間就最短.
【方法探究】
一般的,對某些設(shè)計多個可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實(shí)踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)軸上有A、B、C三個點(diǎn),分別表示有理數(shù)-24,-10,10,動點(diǎn)P從A出發(fā),以每秒1個單位的速度向終點(diǎn)C移動,設(shè)移動時間為t秒.
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:
PA=
t
t
,PC=
34-t
34-t

(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個單位的速度向C點(diǎn)運(yùn)動,Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動到終點(diǎn)A.在點(diǎn)Q開始運(yùn)動后,P、Q兩點(diǎn)之間的距離能否為2個單位?如果能,請求出此時點(diǎn)P表示的數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x=
t+1
-
t
t+1
+
t
,y=
t+1
+
t
t+1
-
t
,t取何值時,代數(shù)式20x2+41xy+20y2的值為2001.

查看答案和解析>>

同步練習(xí)冊答案