【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,則BE的長為( )
A.B.2C.4﹣4D.4﹣2
【答案】C
【解析】
連接AC,交BD與O,過E作EF⊥AB,由正方形的性質(zhì)可求出OB的長,可得∠ABD=∠BAC=45°,即可證明AE為∠BAC的角平分線,△BEF是等腰直角三角形,根據(jù)角平分線的性質(zhì)可得EF=OE=BF,根據(jù)BE=OB-OE,在等腰直角三角形BEF中,根據(jù)BE=EF即可求出EF的長,進(jìn)而求出BE的長即可.
連接AC,交BD與O,過E作EF⊥AB,
∵ABCD是正方形,
∴BD⊥AC,∠ABD=∠BAC=45°,OB=AB=2,
∵∠BAE=22.5°,
∴AE為∠BAC的角平分線,
∵EF⊥AB,OB⊥OA,
∴EF=OE,
∵∠ABD=45°,
∴△BED是等腰直角三角形,
∴BE=EF,
∴OB-EF=EF,
解得EF=4-2,
∴BE=(4-2)=4-4,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】和有一條公共邊,且,是的平分線,是的平分線.
(1)畫出圖形;
(2)若,,求的大。
(3)通過對以上的解題回顧,你發(fā)現(xiàn)與、三個角之間有怎樣的大小關(guān)系?請把你的發(fā)現(xiàn)結(jié)論直接寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品形狀是長方體,長為8cm,它的展開圖如圖:
(1)求該長方體的寬和高;
(2)請為廠家設(shè)計一種包裝紙箱,使每箱能裝2件這種產(chǎn)品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙箱的表面積盡可能。⑶蟪鲈摷埾涞捏w積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于點E,且四邊形ABCD的面積為16,則BE=( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由;
(3)比賽時三人依次出場,順序由抽簽方式?jīng)Q定.求甲、乙相鄰出場的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市中學(xué)生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學(xué)生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題:
(1)在表中:m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)小明的成績是所有被抽查學(xué)生成績的中位數(shù),據(jù)此推斷他的成績在 組;
(4)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學(xué)生的概率是多少?并列表或畫樹狀圖說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣某校為了創(chuàng)建書香校園,去年購進(jìn)一批圖書.經(jīng)了解,科普書的單價比文學(xué)書的單價貴12元,用12000元購進(jìn)的科普書本數(shù)是用9000元購進(jìn)的文學(xué)書本數(shù)的.那么文學(xué)書和科普書的單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東莞市出租車收費標(biāo)準(zhǔn)如下表所示,根據(jù)此收費標(biāo)準(zhǔn),解決下列問題:
行駛路程 | 收費標(biāo)準(zhǔn) |
不超出的部分 | 起步價8元 |
超出的部分 | 2.6元/ |
(1)若行駛路程為,則打車費用為______元;
(2)若行駛路程為,則打車費用為______元(用含的代數(shù)式表示);
(3)某同學(xué)周末放學(xué)回家,已知打車費用為34元,則他家離學(xué)校多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com