小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動(dòng),將△BAC通過變換使斜邊BC經(jīng)過△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=______°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A′C′.
(3)如圖④,若AB=,將△BAC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

【答案】分析:(1)根據(jù)α=∠A′C′A=∠DCA′-∠BCA,進(jìn)而求出答案即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠CAC′=∠BAH,進(jìn)而得出∠CAC′=∠C,即可得出答案;
(3)根據(jù)銳角三角函數(shù)的關(guān)系求出AC,HC以及HC′的長(zhǎng),進(jìn)而得出答案.
解答:解:(1)如圖②,α=∠A′C′A=45°-30°=15°;
故答案為:15;

(2)如圖③,過點(diǎn)A作AH⊥BC,垂足為H,
∵∠CAC′+∠CAH=∠CAH+∠BAH=90°,
∴∠CAC′=∠BAH,
在Rt△ABC中,
∵AH⊥BC,
∴∠HAC+∠C=90°,
∵∠BAH+∠HAC=90°,
∴∠C=∠BAH,
∴∠CAC′=∠C,
∴BC∥A′C′;

(3)如圖④,過點(diǎn)D作DH⊥AC,垂足為H,
∵AB=,
∴AC=A′C′=×=,
∴HC′=DH=A′C′=
∴HC=×=,
所以m的值為:HC-HC′=-
點(diǎn)評(píng):此題主要考查了旋轉(zhuǎn)的性質(zhì)以及銳角三角函數(shù)的關(guān)系等知識(shí),根據(jù)已知得出HC以及HC′的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江都市二模)小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.其中AB=
2
,現(xiàn)在,他讓△C′DA′固定不動(dòng),
將△BAC通過變換使斜邊BC經(jīng)過△C?DA?的直角頂點(diǎn)D.
(1)求A′D的長(zhǎng)度.
(2)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=
15
15
°.
(3)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.求點(diǎn)C走過的路線長(zhǎng).
(4)如圖④,將△BAC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶模擬)小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動(dòng),將△BAC通過變換使斜邊BC經(jīng)過△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=
15
15
°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A′C′.
(3)如圖④,若AB=
2
,將△BAC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市聯(lián)合體(棲霞下關(guān)雨花臺(tái)等)九年級(jí)中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C´DA´的頂點(diǎn)A´、C´分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C´DA´固定不動(dòng),將△BAC通過變換使斜邊BC經(jīng)過△C´DA´的直角頂點(diǎn)D.

(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=  °.
(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A´C´.
(3)如圖④,若AB=,將將△BAC沿射線A´C´方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市聯(lián)合體(棲霞下關(guān)雨花臺(tái)等)九年級(jí)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C´DA´的頂點(diǎn)A´、C´分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C´DA´固定不動(dòng),將△BAC通過變換使斜邊BC經(jīng)過△C´DA´的直角頂點(diǎn)D.

(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過點(diǎn)D,則α=  °.

(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使BC邊經(jīng)過點(diǎn)D.試說明:BC∥A´C´.

(3)如圖④,若AB=,將將△BAC沿射線A´C´方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過點(diǎn)D,求m的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案