分析 (1)首先將A點(diǎn)代入,進(jìn)而求出函數(shù)解析式進(jìn)而利用配方法求出頂點(diǎn)坐標(biāo);
(2)首先設(shè)M(m,m2-2m-3),G(m,m-3),則GM=m-3-m2+2m+3=-m2+3m,再利用S△BCM=$\frac{1}{2}$GM(BN+ON)=$\frac{1}{2}$GM•OB求出答案;
(3)首先得出△AOC∽△DCB,進(jìn)而得出∠E=∠OCB=45°,則tan∠E=1.
解答 解:(1)將(-1,0)代入y=x2-2x+c,
則1+2+c=0,解得:c=-3,
∴y=x2-2x-3
=x2-2x+1-4
=(x-1)2-4
∴D(1,-4);
(2)令y=0,則x2-2x-3=0,
解得:x1=3,x2=-1,
∴B(3,0),C(0,3),
∴yBC=x-3,
如圖(1),過(guò)M作NM⊥x軸交AB于N,交BC于G
設(shè)M(m,m2-2m-3),G(m,m-3),
∴GM=m-3-m2+2m+3
=-m2+3m
∴S△BCM=$\frac{1}{2}$GM(BN+ON)=$\frac{1}{2}$GM•OB
=$\frac{1}{2}$×(-m2+3m)×3
=-$\frac{3}{2}$(m2-3m+$\frac{9}{4}$-$\frac{9}{4}$)
=-$\frac{3}{2}$(m-$\frac{3}{2}$)2+$\frac{27}{8}$
當(dāng)m=$\frac{3}{2}$時(shí),m2-2m-3=$\frac{9}{4}$-2×$\frac{3}{2}$-3=-$\frac{15}{4}$
∴G($\frac{3}{2}$,-$\frac{15}{4}$),面積最大值是$\frac{27}{8}$;
(3)如圖(2),連接CD,過(guò)D作DG⊥x軸于G,DF⊥y軸于F,
由C(0,-3),B(3,0),D(1,-4),有
CF=FD=1,OC=OB=3,
∴∠OCB=∠FCD=45°,
∴∠BCD=∠AOC=90°,
∵$\frac{AO}{OC}$=$\frac{CD}{BC}$=$\frac{1}{3}$,
∴△AOC∽△DCB,
∴∠ACO=∠CBD,
∵∠ACB=∠ACO+∠OCB=∠CBD+∠E,
∴∠E=∠OCB=45°,
∴tan∠E=1.
點(diǎn)評(píng) 此題主要考查了配方法求二次函數(shù)頂點(diǎn)坐標(biāo)以及三角形面積求法和相似三角形的判定與性質(zhì)等知識(shí),正確表示出△BCM的面積是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com