已知AB是半圓O的直徑,點(diǎn)C是半圓O上的動(dòng)點(diǎn),點(diǎn)D是線段AB延長線上的動(dòng)點(diǎn),在運(yùn)動(dòng)過程中,保持CD=OA.
(1)當(dāng)直線CD與半圓O相切時(shí)(如圖①),求∠ODC的度數(shù);
(2)當(dāng)直線CD與半圓O相交時(shí)(如圖②),設(shè)另一交點(diǎn)為E,連接AE,若AE∥OC,
①AE與OD的大小有什么關(guān)系?為什么?
②求∠ODC的度數(shù).
解:(1)如圖①,連接OC,
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ODC=45°;
(2)如圖②,連接OE.
∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
設(shè)∠ODC=∠1=x,則∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°﹣2x.
①AE=OD.理由如下:
在△AOE與△OCD中,
∴△AOE≌△OCD(SAS),
∴AE=OD.
②∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)據(jù)5,8,4,5,3的眾數(shù)和平均數(shù)分別是( )
| A. | 8,5 | B. | 5,4 | C. | 5,5 | D. | 4,5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是( 。
| A. | 相交 | B. | 內(nèi)切 | C. | 外離 | D. | 內(nèi)含 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何實(shí)數(shù)值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com