【題目】如圖,△ABC內(nèi)接于⊙O,直徑DE⊥AB于點(diǎn)F,交BC于點(diǎn) M,DE的延長線與AC的延長線交于點(diǎn)N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長.
【答案】(1)見解析;(2)+
【解析】
(1)由垂徑定理可求得AF=BF,可知DE為AB的垂直平分線,可得AM=BM;
(2)連接AO,BO,可求得∠ACB=60°,可求得∠AOF,由DE的長可知AO,在Rt△AOF中得AF,在Rt△AMF中可求得AM,在Rt△ACM中,由,可求得CM,則可求得BC的長.
(1)證明:
∵直徑DE⊥AB于點(diǎn)F,
∴AF=BF,
∴AM=BM;
(2)連接AO,BO,如圖,
由(1)可得 AM=BM,
∵AM⊥BM,
∴∠MAF=∠MBF=45°,
∴∠CMN=∠BMF=45°,
∵AO=BO,DE⊥AB,
∴∠AOF=∠BOF=,
∵∠N=15°,
∴∠ACM=∠CMN+∠N=60°,即∠ACB=60°,
∵∠ACB=.
∴∠AOF=∠ACB=60°.
∵DE=8,
∴AO=4.
在Rt△AOF中,由,得AF=,
在Rt△AMF中,AM==.得BM= AM=,
在Rt△ACM中,由,得CM=,
∴BC=CM+BM=+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,直線l1∥l2∥l3,點(diǎn)C在l2上,以點(diǎn)C為直角頂點(diǎn)作∠ACB=90°,角的兩邊分別交l1與l3于點(diǎn)A、B,連結(jié)AB,過點(diǎn)C作CD⊥l1于點(diǎn)D,延長DC交l3于點(diǎn)E.
(1)求證:△ACD∽△CBE.
(2)應(yīng)用:如圖②,在圖①的基礎(chǔ)上,設(shè)AB與l2的交點(diǎn)為F,若AC=BC,l1與l2之間的距離為2,l2與l3之間的距離為1,則AF的長度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個小正方形的邊長均為 1,線段 AB 的端點(diǎn) A、B 均在小正方形的頂點(diǎn)上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點(diǎn) C 在小正方形頂點(diǎn)上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點(diǎn) D在小正方形的頂點(diǎn)上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB與拋物線C:y=ax2+2x+c相交于點(diǎn)A(﹣1,0)和點(diǎn)B(2,3)兩點(diǎn).
(1)求拋物線C函數(shù)表達(dá)式;
(2)若點(diǎn)M是位于直線AB上方拋物線上的一動點(diǎn),當(dāng)的面積最大時,求此時的面積S及點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(3,3),點(diǎn)B(4,0),點(diǎn)C(0,﹣1).
(1)以點(diǎn)C為中心,把△ABC逆時針旋轉(zhuǎn)90°,請在圖中畫出旋轉(zhuǎn)后的圖形△A′B′C,點(diǎn)B′的坐標(biāo)為________;
(2)在(1)的條件下,求出點(diǎn)A經(jīng)過的路徑的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為( )
A.28B.24C.20D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,G是上一動點(diǎn),AG,DC的延長線交于點(diǎn)F,連接AC,AD,GC,GD.
(1)求證:∠FGC=∠AGD;
(2)若AD=6.
①當(dāng)AC⊥DG,CG=2時,求sin∠ADG;
②當(dāng)四邊形ADCG面積最大時,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,連接BF、DG.以下結(jié)論:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正確的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,點(diǎn)O為△ACD的內(nèi)切圓圓心,則∠AOB=____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com