【題目】探索規(guī)律:將連續(xù)的偶數(shù)2,4,6,8,…,排成如表:
(1)十字框中的五個數(shù)的和與中間的數(shù)16有什么關系?
(2)移動十字框,設中間的數(shù)為x,用代數(shù)式表示十字框中的五個數(shù)的和;
(3)若將十字框上下左右移動,可框住另外的五個數(shù),其它五個數(shù)的和能等于2560嗎?若能,寫出這五個數(shù),若不能,說明理由.
【答案】(1)五個數(shù)的和是16的5倍;(2)五個數(shù)的和為5x;(3)五個數(shù)是502,510,512,514,522.
【解析】
(1)將圖中框里的五個數(shù)相加即可;
(2)由(1)的規(guī)律直接可得和為5x;
(3)設中間的一個數(shù)為a,則5a=2560,解得a=512,分別寫出五個數(shù)即可.
(1)由圖可知五個數(shù)的和為6+14+16+18+26=80,
∴五個數(shù)的和是16的5倍;
(2)由題意可知,五個數(shù)的和為5x;
(3)設中間的一個數(shù)為a,
∴5a=2560,
∴a=512,
∴五個數(shù)是502,510,512,514,522.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點,F為BC延長線上一點,CE=CF.
(1)△DCF可以看作是△BCE繞點C旋轉(zhuǎn)某個角度得到的嗎?
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:四邊形AFCE是平行四邊形;
(2)填空:①當t為 s時,四邊形ACFE是菱形;②當t為 s時,△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王曉同學要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖,在平行四邊形ABCD中, .
求證:平行四邊形ABCD是 .
(1)在方框中填空,以補全已知和求證;
(2)按王曉的想法寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店在甲批發(fā)市場以每包m元的價格進了40包茶葉,又在乙批發(fā)市場以每包n元的價格進了同樣的60包茶葉,如果商家以每包元的價格賣出這些茶葉,賣完后,這家商店( )
A. 盈利了B. 虧損了C. 不盈不虧D. 盈虧不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,過點A作AD⊥CP,垂足為D,直線AD交CQ于E.
(1)如圖①,當∠PCQ在∠ACB內(nèi)部時,求證:AD+BE=DE;
(2)如圖②,當CQ在∠ACB外部時,則線段AD、BE與DE的關系為_____;
(3)在(1)的條件下,若CD=6,S△BCE=2S△ACD,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,則2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,計算出1+5+52+53+…52017的值為( 。
A. 52018﹣1 B. 52019﹣1 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com