如圖,拋物線(xiàn)y1=x2-1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線(xiàn)向右平移4個(gè)單位得拋物線(xiàn)y2,兩條拋物線(xiàn)相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線(xiàn)y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿(mǎn)足∠CPA=∠OBA,求出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線(xiàn)y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.
(1)拋物線(xiàn)y1=x2-1向右平移4個(gè)單位的頂點(diǎn)坐標(biāo)為(4,-1),
所以,拋物線(xiàn)y2的解析式為y2=(x-4)2-1;

(2)x=0時(shí),y=-1,
y=0時(shí),x2-1=0,解得x1=1,x2=-1,
所以,點(diǎn)A(1,0),B(0,-1),
∴∠OBA=45°,
聯(lián)立
y=x2-1
y=(x-4)2-1
,
解得
x=2
y=3
,
∴點(diǎn)C的坐標(biāo)為(2,3),
∵∠CPA=∠OBA,
∴點(diǎn)P在點(diǎn)A的左邊時(shí),坐標(biāo)為(-1,0),
在點(diǎn)A的右邊時(shí),坐標(biāo)為(5,0),
所以,點(diǎn)P的坐標(biāo)為(-1,0)或(5,0);

(3)存在.
∵點(diǎn)C(2,3),
∴直線(xiàn)OC的解析式為y=
3
2
x,
設(shè)與OC平行的直線(xiàn)y=
3
2
x+b,
聯(lián)立
y=
3
2
x+b
y=(x-4)2-1
,
消掉y得,2x2-19x+30-2b=0,
當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根時(shí),△QOC中OC邊上的高h(yuǎn)有最大值,
此時(shí)x1=x2=
1
2
×(-
-19
2
)=
19
4
,
此時(shí)y=(
19
4
-4)2-1=-
7
16

∴存在第四象限的點(diǎn)Q(
19
4
,-
7
16
),使得△QOC中OC邊上的高h(yuǎn)有最大值,
此時(shí)△=192-4×2×(30-2b)=0,
解得b=-
121
16
,
∴過(guò)點(diǎn)Q與OC平行的直線(xiàn)解析式為y=
3
2
x-
121
16
,
令y=0,則
3
2
x-
121
16
=0,解得x=
121
24
,
設(shè)直線(xiàn)與x軸的交點(diǎn)為E,則E(
121
24
,0),
過(guò)點(diǎn)C作CD⊥x軸于D,根據(jù)勾股定理,OC=
22+32
=
13
,
則sin∠COD=
h
EO
=
3
13
,
解得h最大=
3
13
×
121
24
=
121
13
104
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=-x2+mx+n經(jīng)過(guò)點(diǎn)A(1,0),B(O,-6).
(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)與x軸交于另一點(diǎn)D,求△ABD的面積;
(3)當(dāng)y<0,直接寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①是拋物線(xiàn)形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.
(1)求出拱橋的拋物線(xiàn)解析式;
(2)若水面下降2.5米,則水面寬度將增加多少米?(圖②是備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的長(zhǎng)、寬分別為3和2,OB=2,點(diǎn)E的坐標(biāo)為(3,4)連接AE、ED.
(1)求經(jīng)過(guò)A、E、D三點(diǎn)的拋物線(xiàn)的解析式.
(2)以原點(diǎn)為位似中心,將五邊形ABCDE放大.
①若放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的2倍,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出放大后的五邊形A2B2C2D2E2,并直接寫(xiě)出經(jīng)過(guò)A2、D2、E2三點(diǎn)的拋物線(xiàn)的解析式:______;
②若放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的k倍,請(qǐng)你直接寫(xiě)出經(jīng)過(guò)Ak、Dk、Ek三點(diǎn)的拋物線(xiàn)的解析式:______(用含k的字母表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(-3,0)、B(-1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx-4k(k≠0)的圖象過(guò)點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(-4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線(xiàn)段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①連接AN,當(dāng)△AMN的面積最大時(shí),求t的值;
②直線(xiàn)PQ能否垂直平分線(xiàn)段MN?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=nx2+4nx+m與x軸交于A(-1,0),B(x2,0)兩點(diǎn),與y軸正半軸交于C,拋物線(xiàn)的頂點(diǎn)為D,且S△ABD=1,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司準(zhǔn)備投資開(kāi)發(fā)A、B兩種新產(chǎn)品,通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):
(1)若單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿(mǎn)足正比例函數(shù)關(guān)系:yA=kx;
(2)若單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿(mǎn)足二次函數(shù)關(guān)系:yB=ax2+bx.
(3)根據(jù)公司信息部的報(bào)告,yA,yB(萬(wàn)元)與投資金額x(萬(wàn)元)的部分對(duì)應(yīng)值如下表所示:
x15
yA0.84
yB3.815
(1)填空:yA=______;yB=______;
(2)若公司準(zhǔn)備投資20萬(wàn)元同時(shí)開(kāi)發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤(rùn)為W(萬(wàn)元),試寫(xiě)出W與某種產(chǎn)品的投資金額x(萬(wàn)元)之間的函數(shù)關(guān)系式;
(3)請(qǐng)你設(shè)計(jì)一個(gè)在(2)中能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在銳角△ABC中,BC=9,AH⊥BC于點(diǎn)H,且AH=6,點(diǎn)D為AB邊上的任意一點(diǎn),過(guò)點(diǎn)D作DEBC,交AC于點(diǎn)E.設(shè)△ADE的高AF為x(0<x<6),以DE為折線(xiàn)將△ADE翻折,所得的△A'DE與梯形DBCE重疊部分的面積記為y(點(diǎn)A關(guān)于DE的對(duì)稱(chēng)點(diǎn)A'落在AH所在的直線(xiàn)上).
(1)分別求出當(dāng)0<x≤3與3<x<6時(shí),y與x的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,東梅中學(xué)要在教學(xué)樓后面的空地上用40米長(zhǎng)的竹籬笆圍出一個(gè)矩形地塊作生物園,矩形的一邊用教學(xué)樓的外墻,其余三邊用竹籬笆.設(shè)矩形的寬為x,面積為y.
(1)求y與x的函數(shù)關(guān)系式,并求自變量x的取值范圍;
(2)生物園的面積能否達(dá)到210平方米?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案