解:(1)當F和B重合時,
∵EF⊥DE,
∵DE⊥BC,
∵∠B=90°,
∴AB⊥BC,
∴AB∥DE,
∵AD∥BC,
∴四邊形ABED是平行四邊形,
∴AD=EF=9,
∴CE=BC-EF=12-9=3;
(2)
過D作DM⊥BC于M,
∵∠B=90°,
∴AB⊥BC,
∴DM∥AB,
∵AD∥BC,
∴四邊形ABMD是矩形,
∴AD=BM=9,AB=DM=7,CM=12-9=3,
設AF=CE=a,則BF=7-a,EM=a-3,BE=12-a,
∵∠FEC=∠B=∠DMB=90°,
∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,
∴∠BFE=∠DEM,
∵∠B=∠DME,
∴△FBE∽△EMD,
∴
=
,
∴
=
,
a=5,a=17,
∵點F在線段AB上,AB=7,
∴AF=CE=17(舍去),
即CE=5.
分析:(1)根據題意畫出圖形,得出矩形ABEC求出BE,即可求出CE;
(2)過D作DM⊥BC于M,得出四邊形ABMD是矩形,推出AD=BM=9,AB=DM=7,CM=12-9=3,設AF=CE=a,則BF=7-a,EM=a-3,BE=12-a,求出∠BFE=∠DEM,∠B=∠DME,證△FBE∽△EMD,得出比例式
=
,求出a即可.
點評:本題考查了直角梯形性質,矩形的性質和判定,相似三角形的性質和判定等知識點,主要考查學生綜合運用性質進行推理和計算的能力,題目比較典型,是一道比較好的題目.